0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Главное дозирующее устройство карбюратора

Главное дозирующее устройство карбюратора

Главное дозирующее устройство представляет собой смесеобразующее устройство простейшего карбюратора с дополнительными корректирующими приспособлениями. Оно обеспечивает исправление характеристики простейшего карбюратора до требуемой при работе двигателя на средних нагрузках. Для этого в состав главного дозирующего устройства включается система компенсации смеси. Эта система обеспечивает постепенное обеднение смеси при переходе от малых нагрузок к средним (компенсация смеси).

Совместно с экономайзером или эконостатом главное дозирующее устройство работает при полной мощности двигателя с максимальным открытием дроссельной заслонки. При малых нагрузках главное дозирующее устройство через главный жиклер подает топливо в дозирующую систему холостого хода. Таким образом, главное дозирующее устройство карбюратора обеспечивает работу двигателя практически во всех чаще всего встречающихся режимах. Через главное дозирующее устройство расходуется наибольшее количество топлива.

В современных карбюраторах регулировка состава горючей смеси, приготовляемой главным дозирующим стройством, осуществляется преимущественно пневматическим торможением топлива. Этот способ широко применяется из-за высокого качества распыливания топлива в воздушном потоке и простоты исполнения системы компенсации смеси. Для улучшения процесса смесеобразования главное дозирующее устройство может иметь два или даже три диффузора.

Рекламные предложения на основе ваших интересов:

Работает главное дозирующее устройство с пневматическим торможением топлива (рис. 23) следующим образом. Топливо из поплавковой камеры поступает через главный жиклер в распылитель. Распылитель соединен эмульсионным каналом с воздушным жиклером компенсационной системы. Когда двигатель не работает, топливо в поплавковой камере, распылителе и эмульсионном канале находится на одинаковом уровне. При работе двигателя в диффузоре создается разрежение и топливо начинает вытекать из распылителя. При этом уровень его в эмульсионном канале понижается. По мере открытия дроссельной заслонки разрежение в диффузоре еще больше возрастает. Это вызывает полный расход топлива из эмульсионного канала и через воздушный жиклер в трубку начинает поступать воздух. Вследствие этого уменьшается разрежение у главного жиклера, тормозится истечение топлива через распылитель и образуется эмульсия. В результате количество топлива в смеси уменьшается и смесь обедняется.

Конструктивное исполнение системы компенсации смеси в главном дозирующем устройстве может несколько отличаться по сравнению с описанной. Так, в некоторых карбюраторах эмульсионный канал делают наклонным, а не вертикальным. Это несколько повышает эффективность пневматического торможения. Кроме того, эмульсионный канал выполняют в виде трубки, расположенной в эмульсионном колодце, что повышает эмульсирование топлива.

Карбюраторы, выполненные по рассмотренной схеме главного дозирующего устройства, регулируют изменением проходных сечений главного и воздушного жиклеров. Увеличение проходного сечения воздушного жиклера способствует нарастанию коэффициента избытка воздуха, т. е. обеднению смеси, увеличение проходного сечения главного жиклера вызывает обогащение смеси. Самый выгодный состав смеси для характерных режимов работы двигателя достигается совместными действиями главного дозирующего устройства и системы холостого хода карбюратора.

Система холостого хода обеспечивает работу двигателя без нагрузки на холостом ходу, например при остановке автомобиля. Чтобы перевести двигатель на холостой ход, дроссельную заслонку закрывают и этим уменьшают количество горючей смеси, которая поступает в цилиндры. При этом разрежение в диффузоре и у устья распылителя падает, что приводит к прекращению работы главного дозирующего устройства.

Рис. 23. Схема главного дозирующего устройства с пневматическим торможением топлива:
1 — поплавковая камера, 2 —воздушный жиклер, 3 — эмульсионный канал, 4 — распылитель, 5 — главный жиклер

На рис. 24 приведена схема системы холостого хода, в которую топливо поступает из главного жиклера. При малой частоте вращения коленчатого вала дроссельная заслонка закрыта и за ней образуется большое разрежение. Под действием этого разрежения топливо проходит через главный жиклер в горизонтальный канал и через топливный жиклер холостого хода попадает в эмульсионный канал. В начале эмульсионного канала установлен воздушный жиклер холостого хода, через который подается воздух в систему холостого хода. Воздух, пройдя через жиклер, смешивается с топливом и образует эмульсию, которая по эмульсионному каналу подводится к отверстиям в стенке смесительной камеры.

Точное расположение отверстий относительно дроссельной заслонки играет важную роль в образовании горючей смеси. При полностью закрытой дроссельной заслонке отверстие находится несколько ниже, а отверстие несколько выше ее края. Поэтому при работе двигателя на холостом ходу эмульсия будет поступать в зону наибольшего разрежения, т. е. под дроссельную заслонку и через отверстие. Через отверстие в эмульсионный канал примешивается воздух, уменьшающий разрежение в системе холостого хода.

Как только дроссельную заслонку приоткрывают, через отверстие эмульсия начинает поступать в смесительную камеру, тем самым не допускается переобеднение смеси в первые моменты открытия дроссельной заслонки и обеспечивается плавный переход работы двигателя с малой частоты вращения коленчатого вала при холостом ходе на режим средних нагрузок.

Количество эмульсии, поступающей под дроссельную заслонку, регулируют винтом, установленным в канале. При завертывании винта его конус уменьшает проходное сечение отверстия, изменяя состав смеси. Регулировочный винт обычно называют винтом качества смеси. Количество поступающей в цилиндры горючей смеси регулируют также винтом, при вращении которого изменяется положение дроссельной заслонки. Регулировочный винт называют винтом количества смеси.

Рис. 24. Схема системы холостого хода:
1 — поплавковая камера, 2 — воздушный жиклер холостого хода, 3 — топливный жиклер холостого хода, 4 — эмульсионный канал, 5 — верхнее отверстие в стенке смесительной камеры, 6 — винт регулировки качества смеси, 7 — нижнее отверстие в стенке смесительной камеры, 8 — дроссельная заслонка, 9 — винт регулировки количества смеси, 10 — горизонтальный канал системы холостого хода, 11 — главный жиклер

В современных карбюраторах (К-88, К-126 и др.) система холостого хода работает не только в режиме холостого хода. Она играет важную роль в исправлении характеристики простейшего карбюратора на режимах средних нагрузок и полной мощности. Достигается это благодаря тему, что система холодного хода постепенно включается в работу главного дозирующего устройства по мере открытия дроссельной заслонки. При этом расход топлива через систему уменьшается.

На холостом ходу расход топлива, поступающего через систему холостого хода, составляет от 100 до 40% общего расхода топлива. С увеличением частоты вращения коленчатого вала основная масса топлива подается главным дозирующим устройством, а на долю системы холостого хода приходится не более 20%. При полностью открытой дроссельной заслонке система холостого хода подает по своим каналам воздух в главное дозирующее устройство. Благодаря такому влиянию системы холостого хода характеристика карбюратора приближается к требуемой, которая обеспечивает наиболее выгодные условия работы двигателя на всех режимах.

Рис. 25. Схема экономайзера с механическим приводом:
1 — поплавковая камера, 2 — планка привода клапана экономайзера, 3 — толкатель клапана экономайзера, 4 — дроссельная заслонка, 5 — рычаг дроссельной заслонки, 6 — жиклер экономайзера, 7 — шток привода клапана экономайзера, 8 — клапан экономайзера

Главное дозирующее устройство карбюратора

Каждый карбюратор имеет главное дозирующее устройство, обеспечивающее работу двигателя на всех режимах, кроме режима малого числа оборотов холостого хода. Это устройство обычно подает наибольшую порцию топлива для образования горючей смеси.

При рассмотрении работы элементарного карбюратора было установлено, что с увеличением открытия дроссельной заслонки количество вытекающего из распылителя топлива растет быстрее, чем количество воздуха, проходящего через диффузор, т. е. горючая смесь обогащается тем больше, чем больше открывается дроссельная заслонка. В то же время в идеальном карбюраторе по мере открытия заслонки наблюдается постепенное обеднение горючей смеси. Очевидно, что этому условию (обеднению смеси) элементарный карбюратор не удовлетворяет. Предотвращение обогащения горючей смеси с увеличением открытия дроссельной заслонки называют компенсацией ее состава.

Устранение отмеченного недостатка в элементарном карбюраторе достигается различными методами компенсации состава горючей смеси: увеличением содержания воздуха в горючей смеси или уменьшением скорости истечения топлива из жиклеров.

Рекламные предложения на основе ваших интересов:

В современных карбюраторах компенсация смеси осуществляется следующими методами:
1) пневматическим торможением топлива;
2) регулированием разрежения в диффузоре;
3) совместным действием главного дозирующего устройства и системы холостого кода, включенной после главного жиклера.

Главное дозирующее устройство при любом из перечисленных выше методов компенсации обеспечивает приготовление карбюратором при средних нагрузках обедненной, т. е. экономичной, горючей смеси.

Компенсация горючей смеси пневматическим торможением топлива (эмульсирование топлива в главной дозирующей системе карбюратора). Топливо из поплавковой камеры поступает через главный жиклер в колодец, эмульсионную трубку с отверстиями и распылитель. Трубка сообщается с воздухом через жиклер. При создании разрежения в диффузоре из распылителя начинает фонтанировать топливо, уровень его в колодце понижается, и открывается верхнее отверстие в эмульсионной трубке. Воздух, выходящий из трубки, смешивается с топливом, и эмульсия подается через распылитель в смесительную камеру карбюратора. При увеличении открытия дроссельной заслонки возрастает расход топлива из колодца и больше открывается воздушных отверстий в трубке. Воздух, поступающий в распылитель, уменьшает разрежение у главного жиклера и замедляет истечение топлива из него, что необходимо для обеднения смеси при работе двигателя на средних нагрузках.

Рис. 1. Схема компенсации горючей смеси пневматическим торможением топлива:
1 — распылитель; 2 — воздушный жиклер; 3 — колодец; ,4 — трубка; 5 — поплавковая камера; 6 — главный жиклер; 7 — диффузор

Создание экономичной смеси в этих условиях возможно лишь при правильном подборе диаметров воздушного и топливного жиклеров.

Компенсация данного типа применяется в карбюраторах К-126Б, К-88, К-113 и др., установленных соответственно на двигателях автомобилей ГАЗ -53А, ЗИЛ -130, ГАЗ -13 «Чайка» и др.

Компенсация горючей смеси путем регулирования разрежения в диффузоре. Особенностью данного карбюратора является наличие тройного диффузора. Малый и средний диффузоры, расположенные внутри большого диффузора, несколько смещены вниз относительно него. Главное дозирующее устройство состоит из главного жиклера с распылителем и дополнительного с распылителем. Распылитель главного жиклера выведен в малый диффузор, а распылитель дополнительного жиклера — в большой диффузор.

Рис. 2. Схема компенсации горючей смеси путем регулирования разрежения в диффузоре:
а — при отсутствии потока воздуха; б — при наличии потока воздуха; 1 — распылитель дополнительного жиклера; 2 — распылитель главного жиклера; 3 — дополнительный жиклер; 4 — главный жиклер; 5 — дроссельная заслонка; в — смесительная камера; 7 — упругие пластинки; 8 — средний диффузор; 9 — малый диффузор; ю — большой диффузор

Воздушный поток, поступающий в смесительную камеру карбюратора, проходит через большой диффузор, а часть потока — через малый и средний диффузоры. При увеличении скорости движения воздуха тонкие упругие пластинки, укрепленные на большом диффузоре, отгибаются, и часть воздушного потока минует малый и средний диффузоры.

При увеличении открытия дроссельной заслонки возрастает количество воздуха, проходящего через карбюратор, и упругие пластинки отгибаются сильнее. Большее количество воздуха проходит, минуя малый и средний диффузоры, в результате чего возрастает разрежение во всех диффузорах, но у распылителя главного жиклера оно нарастает медленнее, чем у распылителя дополнительного жиклера. Это объясняется тем, что у устья распылителя дополнительного жиклера проходит весь воздушный поток, а у распылителя главного жиклера — только часть потока. Поэтому подача топлива главным жиклером способствует обеднению горючей смеси, а подача дополнительным — обогащению смеси. При правильном подборе диаметров обоих жиклеров и упругости подвижных пластин можно получить горючую смесь необходимого состава.

Компенсация горючей смеси с регулированием разрежения в диффузоре применяется в карбюраторах К-22И, К-22Г, К-22Ж и др., установленных на двигателях автомобилей ГАЗ -51А, М-21 «Волга», УАЗ -450 и др.

Рис. 3. Компенсация горючей смеси при совместном действии главного дозирующего устройства и системы холостого хода, включенной после главного жиклера:
а — малое число оборотов холостого хода; б — малые нагрузки; в — средние нагрузки; с — полная нагрузка; 1 — топливный жиклер холостого хода; 2 — воздушный жиклер системы холостого хода; 3 — эмульсионный канал; 4 — эмульсионная трубка главного дозирующего устройства; 5 — жиклер полной мощности; в — главный жиклер; 7 и в — эмульсионные отверстия холостого хода; 8 — регулировочный винт; 10 — дроссельная заслонка; 11 — малый диффузор; 12 — воздушный жиклер

Компенсация горючей смеси совместным действием главного дозирующего устройства и системы холостого хода, включенной после главного жиклера. Когда дроссельная заслонка карбюратора прикрыта, двигатель работает с малым числом оборотов холостого хода и топливо из поплавковой камеры карбюратора проходит через главный жиклер, топливный жиклер системы холостого хода и поступает в эмульсионный канал. Во время движения топлива по каналу к нему подмешивается воздух, проходящий через воздушный жиклер системы холостого хода. Образовавшаяся эмульсия выходит через нижнее отверстие, так как за дроссельной заслонкой создается сильное разрежение. При таком положении дроссельной заслонки через, верхнее отверстие к эмульсии добавляется воздух, и оно в этом случае играет роль дополнительного воздушного жиклера системы холостого хода.

Через жиклер полной мощности топливо заполняет эмульсионный колодец, в котором находится трубка. Уровень топлива в колодце понижается на 5—8 мм относительно уровня топлива в поплавковой камере. В результате этого создается напор перед главным жиклером, что улучшает подачу топлива в систему холостого хода.

По мере увеличения открытия дроссельной заслонки отверстие попадает в зону большего разрежения, и из этого отверстия также начинает выходить эмульсия. В связи с увеличением расхода топлива через систему холостого хода уровень топлива в эмульсионном колодце быстро понижается, и эмульсирование топлива начинается еще до жиклера холостого хода. К проходящему через систему холостого хода топливу подмешивается воздух, поступающий через воздушный жиклер холостого хода, воздушный жиклер и эмульсионную трубку главного дозирующего устройства.

При дальнейшем открытии дроссельной заслонки, т. е. при переходе на средние нагрузки, разрежение у топливного жиклера системы холостого хода уменьшается и возрастает разрежение в малом диффузоре. Уровень топлива в эмульсионном колодце начинает повышаться, и как только он достигнет нижних отверстий эмульсионной трубки, в работу вступает главное дозирующее устройство. Воздух, проходящий в эмульсионный колодец через воздушный жиклер, эмульсирует топливо, поступающее по трубке в кольцевую щель малого диффузора. К топливу также подмешивается воздух, проходящий в эмульсионную трубку через верхние отверстия. Уровень топлива в эмульсионном колодце не повышается, так как истечение топлива притормаживается воздухом. Топливо в виде эмульсии поступает также из отверстий системы холостого хода. Таким образом, на средних нагрузках работают главное дозирующее устройство и система холостого хода, взаимно дополняя друг друга. Качество смеси при этом можно регулировать винтом.

При полном открытии дроссельной заслонки расход топлива через главное дозирующее устройство увеличивается, а из отверстий системы холостого хода полностью прекращается. Топливный жиклер системы холостого хода в этом случае работает как дополнительный воздушный жиклер главного дозирующего устройства. Воздух в главное дозирующее устройство поступает через отверстия и каналы «истемы холостого хода. При этом горючая смесь излишне обедняется, вследствие чего в карбюраторах применяют специальные устройства, позволяющие несколько обогащать смесь при работе двигателя с полной нагрузкой.

Совместная работа главного дозирующего устройства и системы холостого хода, включенной после главного жиклера, позволяет карбюратору готовить экономичную горючую смесь при работе двигателя на режиме средних нагрузок.

А.С. Исаев. Изучайте автомобиль

сертифицированные ВНИИЖТ- «Фаворит К» и «Фаворит Щ», внутренняя и наружная замывка вагонов.

Устройство автомобиля и его механизмов

Система питания автомобиля

Главное дозирующее устройство карбюратора

Главное дозирующее устройство. В обычных условиях эксплуатации двигатель автомобиля работает преимущественно на режимах средней нагрузки, при неполном открытии дроссельной заслонки карбюратора. Как уже было отмечено раньше, несмотря на изменения разрежения в диффузоре, неизбежные во всем диапазоне средней нагрузки двигателя, карбюратор должен приготовлять незначительно обедненную — экономичную горючую смесь. Для этого и предназначено главное дозирующее устройство, которое по принципу работы может быть: а) с регулированием разрежения у жиклера, б) с регулированием разрежения в диффузоре.

Главное дозирующее устройство с регулированием разрежения у жиклера. Схема карбюратора, имеющего такое главное дозирующее устройство, показана па фиг. 73.

Карбюратор имеет колодец 3, соединенный с поплавковой камерой 2 отверстием жиклера 1. Колодец 3 сообщается также с наружным воз1 духом через калиброванное отверстие 4. Из колодца в диффузор 6 выходит трубка-распылитель 5 с калиброванным отверстием на верхнем конце.

Перед пуском двигателя колодец 3 заполнен топливом до уровня, равного уровню в поплавковой камере. После пуска двигателя и при работе с переменным режимом уровень топлива в колодце 3 не остается постоянным.

С увеличением разрежения в диффузоре уровень топлива в колодце снижается, так как топлива расходуется больше, чем поступает в колодец. К топливу, протекающему через распылитель 5, примешивается воздух, проходящий через калиброванное отверстие 4. Смесь воздуха с топливом, в которой воздух содержится в виде пузырьков, называется эмульсией.

С увеличением разрежения в диффузоре увеличивается также разрежение и в колодце 3, но величина этого разрежения будет меньше, так как колодец сообщается через отверстие 4 с атмосферой.

Из- сказанного следует, что истечение топлива в колодец происходит не только вследствие разности уровней в поплавковой камере и колодце, но и под действием разрежения в колодце, разрежение перед калиброванным отверстием жиклера 1 в колодце 3 меньше разрежения в диффузоре, поэтому с увеличением разрежения в диффузоре уровень топлива в колодце падает и соответственно уменьшается расход топлива из распылителя 5, т. е. горючая смесь обедняется. Таким образом, принцип работы главного дозирующего устройства рассматриваемого карбюратора основан на регулировании величины разрежения перед жиклером.

Фиг. 73. Главное дозирующее устройство карбюратора с регулированием разрежения у жиклера.

Фиг. 74. Главное дозирующее устройство карбюратора с регулированием разрежения в диффузоре.

Топливо, поступающее в колодец 3, задерживается (тормозится) струей воздуха, подсасываемого в колодец через отверстие 4. Поддержание нужного состава смеси в главном дозирующем устройстве такого типа обеспечивается торможением топлива струей воздуха. Поэтому такое устройство называется главным дозирующим устройством с пневматическим торможением.

Главное дозирующее устройство с регулированием разрежения в диффузоре. Схема карбюратора, имеющего такое дозирующее устройство, показана на фиг. 74.

В смесительной камере карбюратора находятся три концентрично расположенных диффузора: наружный 5, средний 7 и внутренний 6. В горловину диффузора 6 выходит распылитель / главного жиклера 2. В нижней части наружного диффузора 5 имеются окна, закрываемые упругими стальными пластинами 8. Пластины 8 отгибаются к стенкам смесительной камеры под действием напора воздушного потока, преодолевающего их упругость. При этом воздух направляется в обход внутренних диффузоров. Таким образом, наружный диффузор снабжен четырьмя пластинчатыми клапанами для поступления в смесительную камеру добавочного воздуха. Количество добавочного воздуха зависит от величины разрежения в смесительной камере, т. е. от положения дроссельной заслонки и от скорости вращения коленчатого вала двигателя.

В горловину большого диффузора 5 выходит распылитель 4 дополнительного жиклера 3.

Главный и дополнительный жиклер объединены в одном блоке. При малом открытии дроссельной заслонки, или при малой скорости вращения коленчатого вала, разрежение в большом диффузоре незначительно и пластинчатые клапаны закрыты. При этом основная часть топлива поступает через главный жиклер в малый диффузор. При увеличении открытия дроссельной заслонки, или при увеличении скорости вращения коленчатого вала, разрежение в смесительной камере возрастает, пластинчатые клапаны открываются и воздух идет в обход внутренних диффузоров. В связи с увеличением общего расхода воздуха через смесительную камеру возрастает разрежение в горловине большого диффузора и истечение топлива из дополнительного жиклера усиливается. В малом диффузоре разрежение также увеличивается, но медленнее, чем в большом, так как основная часть воздуха проходит в обход малого диффузора. Поэтому истечение топлива из главного жиклера хотя и увеличивается, но медленнее, чем истечение из дополнительного жиклера.

Таким образом, при увеличении разрежения в смесительной камере главный жиклер обедняет, а дополнительный жиклер обогащает горючую смесь. Совместная работа обоих жиклеров обеспечивает приготовление горючей смеси постоянного состава (экономичной) на режимах средней нагрузки двигателя. При этом принцип работы главного дозирующего устройства рассматриваемого карбюратора состоит в регулировании величины разрежения в диффузорах.

Устройство автомобилей

Главная дозирующая система карбюратора

Примитивная конструкция простейшего карбюратора не способна обеспечить достаточную управляемость работой двигателя, и уж тем более – его экономичную работу. При средних нагрузках, начиная от самых малых и до 85% полной загрузки двигателя в его цилиндры нужно подавать разное количество горючей смеси примерно постоянного состава, но слегка обедненной, что необходимо для минимального расхода топлива во время работы двигателя.

Для поддержания примерно постоянного и наиболее выгодного с экономической точки зрения состава горючей смеси при разном открытии дроссельной заслонки на средних нагрузках (т. е. для компенсации состава смеси), в карбюраторе должны быть предусмотрены специальные устройства, чутко реагирующие на постоянно изменяющиеся потребности двигателя в количестве горючей смеси — компенсационные устройства. По способу действия этих устройств в основном и различаются карбюраторы разных моделей.
Общее название таких устройств, обеспечивающих приготовление горючей смеси в широком диапазоне средних нагрузок – главная дозирующая система (ГДС) карбюратора.

В большинстве моделей современных карбюраторов преимущественное применение получила компенсация состава смеси пневматическим торможением, принцип которого рассмотрен ниже. Эта система проста по конструкции и достаточно надежна в работе. В карбюраторах некоторых типов дополнительная корректировка состава горючей смеси при данном способе компенсации осуществляется системой холостого хода, питаемой из главной дозирующей системы и работающей при средних положениях дроссельной заслонки.

Под главной дозирующей системой понимается та часть топливной системы карбюратора, через которую подается основное количество топлива при работе двигателя на всех режимах, кроме холостого хода.
На Рис. 1 приведены две графические характеристики – простейшего и идеального карбюраторов.

В простейшем карбюраторе по мере увеличения открытия дроссельной заслонки и увеличения разрежения ∆Рд в диффузоре коэффициент избытка воздуха α уменьшается, т. е. горючая смесь непрерывно обогащается. Задача главной дозирующей системы – обеспечение состава смеси, соответствующего условиям идеального карбюратора (кривая 2 на Рис. 1).

Достигается это путем корректирования характеристики простейшего карбюратора в соответствии с нагрузочным режимом, при этом используется метод пневматического торможения топлива (регулирование разрежения у жиклера). На остальных режимах работы двигателя для поддержания требуемого состава горючей смеси используются вспомогательные системы и устройства:

  • Система пуска – при пуске холодного двигателя;
  • Система холостого хода – при работе двигателя без нагрузки (на холостом ходу);
  • Система компенсации смеси – включается, как дополнение к главной дозирующей системе при работе двигателя в режиме средних нагрузок;
  • Экономайзер – дополняет главную дозирующую систему в режиме максимальных нагрузок (максимальной мощности двигателя);
  • Ускорительный насос – дополняет главную дозирующую систему в кратковременных режимах экстремальных нагрузок (например, при необходимости резкого разгона автомобиля или трогании с места).



Принципиальная схема главной дозирующей системы карбюраторов (Рис. 2) отличается от рассмотренной в предыдущей статье схемы простейшего карбюратора тем, что между главным топливным жиклером 5 и распылителем устанавливается воздушный жиклер 2, расположенный в верхней части колодца 3 воздушного жиклера.
При неработающем двигателе уровни топлива в поплавковой камере, колодце воздушного жиклера и распылителе одинаковые. При работе двигателя на средних нагрузках топливо из колодца 3 быстро высасывается и через воздушный жиклер 2 и колодец в канал распылителя подается воздух, который, смешиваясь с топливом, образует эмульсию (смесь пузырьков воздуха с топливом), поступающую в диффузор 7.

Эмульсия быстро испаряется в смесительной камере карбюратора. Воздух, находящийся в эмульсии, никакого влияния на состав смеси не оказывает, так как его количество по сравнению с воздухом, проходящим через диффузор 7, ничтожно мало. Но под его действием снижается разрежение у топливного жиклера 5, в результате чего уменьшается расход топлива и соответственно обедняется приготовляемая карбюратором горючая смесь по сравнению с горючей смесью, получаемой при тех же условиях в простейшем карбюраторе.

Необходимое изменение состава смеси в соответствии с режимами работы двигателя обеспечивается путем подбора сечений топливного и воздушного жиклера.

На рисунке 3 приведена принципиальная схема главной дозирующей системы с системами пуска и холостого хода, где используется эмульсионная трубка 15 с отверстиями.

При работе двигателя уровень топлива в воздушном колодце опускается, и как только он опустится до верхнего радиального отверстия в трубке 15, в распылитель вместе с топливом из колодца начинает поступать воздух, который, перемешиваясь с топливом, образует эмульсию.
При дальнейшем увеличении открытия дроссельной заслонки 1 увеличивается расход топливной эмульсии через распылитель, и уровень топлива в колодце и эмульсионной трубке 15 понижается еще больше, что приводит к открытию новых отверстий.
Требуемую степень обеднения смеси получают подбором сечений жиклеров 14 и 16 и высоты уровня топлива в поплавковой камере карбюратора.

Балансировка карбюратора

Балансировка карбюратора необходима для предотвращения обогащения горючей смеси в случае засорения воздушного фильтра, в результате чего в цилиндры не сможет поступать горючая смесь нужного состава и количества.
В несбалансированном карбюраторе (Рис. 3) поплавковая камера непосредственно сообщается с атмосферой посредством специального отверстия в верхней части камеры. В таком карбюраторе в случае засорения воздушного фильтра в смесительной камере увеличивается разрежение, а в поплавковой давление остается неизменным (равным атмосферному), что ведет к увеличению истечения топлива из распылителя и к повышенному его расходу.

В сбалансированном карбюраторе (Рис. 2) воздух в поплавковую и смесительную камеры поступает через специальный канал, подведенный к верхней части воздушного патрубка карбюратора (под воздушным фильтром), и его засорение не вызывает разности давлений в поплавковой и смесительной камерах. Поскольку разность давлений отсутствует, засорение фильтра не влияет на качественный состав горючей смеси, т. е. не будет иметь место чрезмерное истечение топлива из распылителя.
Чаще всего для выравнивания давления в поплавковой и смесительной камерах в сбалансированном карбюраторе над воздушной заслонкой устанавливается заборная трубка или выполняется специальный канал в корпусе карбюратора, сообщающий эти камеры.
Карбюраторы современных автомобилей выполняются сбалансированными.

Главное дозирующее устройство карбюратора

Ниже представлен краткий обзор систем, устройств и механизмов карбюратора Солекс (2108, 21081, 21083), автомобилей ВАЗ 2108, 2109, 21099.

Пусковое устройство

Пусковое устройство карбюратора 2108, 21081, 21083 Солекс предназначено для обеспечения пуска холодного двигателя автомобиля. Состоит из корпуса, диафрагмы со штоком, рычагов привода воздушной и дроссельной заслонок.

СХХ предназначена для обеспечения работы двигателя на холостом ходу. Она включает в себя: топливный и воздушный жиклеры; топливные, воздушные, эмульсионные каналы; винты регулировки «количества» и «качества» топливной смеси, поступающей в двигатель.

схема системы холостого хода карбюратора Солекс 2108, 21081, 21083

Экономайзер принудительного холостого хода (ЭПХХ)

ЭПХХ необходим для отключения подачи топлива в двигатель через систему холостого хода после остановки двигателя и при переходе с работы на холостом ходу к мощностным режимам. ЭПХХ состоит из электромагнитного клапана, электронного блока управления, концевого выключателя (наконечника винта «количества» топливной смеси).

видимые элементы системы ЭПХХ карбюратора Солекс в подкапотном пространстве автомобиля ВАЗ 21083

Главные дозирующие системы обеих камер карбюратора (ГДС)

ГДС обеспечивает работу карбюратора при запуске двигателя, работе на малых, средних и максимальных нагрузках. Состоит из главных топливных и воздушных жиклеров, эмульсионных трубок и эмульсионных колодцев, воздушных и топливных каналов, диффузоров с распылителями.

Переходные системы обеих камер карбюратора

Переходные системы необходимы для плавного перехода с холостого хода на малые и средние нагрузки (переходная система 1-й камеры). И со средних нагрузок на мощностные режимы работы двигателя (переходная система 2-й камеры). Переходные системы карбюратора состоят из топливных и воздушных каналов, топливных и воздушных жиклеров, выходных отверстий в обеих камерах карбюратора.

выходные отверстия переходных систем обеих камер карбюратора 2108, 21081, 21083 Солекс

Ускорительный насос (УН)

УН необходим для кратковременного принудительного обогащения топливной смеси при открытии дроссельной заслонки на разных режимах работы двигателя автомобиля. УН состоит из корпуса, диафрагмы с толкателем и пружиной, шарикового клапана, топливных каналов, распылителя с двумя носиками в разные камеры карбюратора, механического привода от кулачка на оси дроссельной заслонки первой камеры.

Экономайзер мощностных режимов

Экономайзер мощностных режимов служит для дополнительного обогащения топливной смеси на мощностных и нагрузочных режимах, поддерживая стабильную работу двигателя. Состоит из корпуса, диафрагмы с пружиной, шарикового клапана, топливного жиклера.

снятие диафрагмы экономайзера мощностных режимов карбюратора 2108, 21081, 21083 Солекс

Эконостат

Эконостат обогащает топливную смесь поступающую в цилиндры двигателя на скоростных режимах, при полностью открытых дроссельных заслонках. Состоит из топливного жиклера, трубки, топливного канала.

Поплавковый механизм

Поплавковый механизм предназначен для регулировки топливоподачи в карбюратор. Состоит из игольчатого запорного клапана и поплавков.

элементы верхней части поплавковой камеры карбюратора Солекс

Механизм блокировки дроссельной заслонки второй камеры карбюратора

Механизм блокировки обеспечивает устойчивую работу двигателя при движении автомобиля с непрогретым двигателем. Дроссельная заслонка второй камеры открывается только при определенной величине открытия воздушной заслонки карбюратора. В других случаях ее блокирует рычаг на оси дроссельной заслонки второй камеры карбюратора.

Еще статьи по карбюраторам 2108, 21081, 21083 Солекс

Система компенсации смеси в главном дозирующем устройстве может иметь различное конструктивное исполнение. Эмульсионный канал (3) [рис. 1, б)] в некоторых карбюраторах выполнен не вертикальным, а наклонным, что позволяет несколько повысить эффективность пневматического торможения. Помимо этого, канал изготавливается в виде трубки, которая расположена в эмульсионном колодце, за счёт чего повышается эмульсирование топлива.

а) – Схема простейшего карбюратора:

3) – Игольчатый клапан;

4) – Штуцер подачи топлива;

5) – Отверстие, сообщающее с атмосферой полость поплавковой камеры;

6) – Входной воздушный патрубок;

9) – Смесительная камера;

11) – Дроссельная заслонка;

12) – Выходной патрубок;

13) – Впускной клапан;

14) – Цилиндр двигателя;

б) – Схема главного дозирующего устройства с пневматическим торможением топлива:

1) – Поплавковая камера;

2) – Воздушный жиклёр;

3) – Эмульсионный канал;

5) – Главный жиклёр;

в) – Схема системы холостого хода:

1) – Поплавковая камера;

2) – Воздушный жиклёр холостого хода;

3) – Топливный жиклёр холостого хода;

4) – Эмульсионный канал;

5) – Верхнее отверстие в стенке смесительной камеры;

6) – Винт регулировки качества смеси;

7) – Нижнее отверстие в стенке смесительной камеры;

8) – Дроссельная заслонка;

9) – Винт регулировки количества смеси;

10) – Горизонтальный канал системы холостого хода;

11) – Главный жиклёр;

г) – Характеристики карбюраторов:

1) – Характеристика простейшего карбюратора;

2) – Характеристика идеального карбюратора.

Регулировка карбюратором с показанным на [рис. 1, б)] главным дозирующим устройством осуществляется путём изменения проходных сечений главного и воздушного жиклёров. При увеличении проходного сечения воздушного жиклёра происходит нарастание коэффициента избытка воздуха (смесь обедняется), а при увеличении проходного сечения главного жиклёра происходит обогащение смеси. Оптимальный состав горючей смеси для характерных режимов работы двигателя достигается посредством совместных действий главного дозирующего устройства, а также системы холостого хода.

Дозирующие устройства карбюратора и принцип их действия. Главная дозирующая система (ГДС) представляет собой смесеобразующее устройство простейшего карбюратора с дополнительными корректирующими приспособлениями.

Оно обеспечивает исправление характеристики простейшего карбюратора до требуемой при работе двигателя на средних нагрузках. Для этого в состав главного дозирующего устройства включается система компенсации смеси. Эта система обеспечивает постепенное обеднение смеси при переходе от малых нагрузок к средним (компенсация смеси).

Совместно с экономайзером или эконостатом главное дозирующее устройство работает при полной мощности двигателя с максимальным открытием дроссельной заслонки. При малых нагрузках главное дозирующее устройство через главный жиклер подает топливо в дозирующую систему холостого хода. Таким образом, главное дозирующее устройство карбюратора обеспечивает работу двигателя практически во всех чаще всего встречающихся режимах. Через главное дозирующее устройство расходуется наибольшее количество топлива.

В современных карбюраторах регулировка состава горючей смеси, приготовляемой главным дозирующим устройством, осуществляется преимущественно пневматическим торможением топлива. Этот способ широко применяется из-за высокого качества распыливания топлива в воздушном потоке и простоты исполнения системы компенсации смеси. Для улучшения процесса смесеобразования главное дозирующее устройство может иметь два или даже три диффузора.

Работает главное дозирующее устройство с пневматическим торможением топлива (рис. 5) следующим образом. Топливо из поплавковой камеры 1 поступает через главный жиклер 5 в распылитель 4. Распылитель соединен эмульсионным каналом 3 с воздушным жиклером 2 компенсационной системы. Когда двигатель не работает, топливо в поплавковой камере, распылителе и эмульсионном канале находится на одинаковом уровне.

При работе двигателя в диффузоре создается разрежение и топливо начинает вытекать из распылителя. При этом уровень его в эмульсионном канале понижается. По мере открытия дроссельной заслонки разрежение в диффузоре еще больше возрастает. Это вызывает полный расход топлива из эмульсионного канала и через воздушный жиклер 2 в трубку начинает поступать воздух. Вследствие этого уменьшается разрежение у главного жиклера, тормозится истечение топлива через распылитель и образуется эмульсия. В результате количество топлива в смеси уменьшается и смесь обедняется.

Конструктивное исполнение системы компенсации смеси в главном дозирующем устройстве может несколько отличаться по сравнению с описанной. Так, в некоторых карбюраторах эмульсионный канал 3 делают наклонным, а не вертикальным. Это несколько повышает эффективность пневматического торможения. Кроме того, эмульсионный канал 3 выполняют в виде трубки, расположенной в эмульсионном колодце, что повышает эмульсирование топлива.

Карбюраторы, выполненные по рассмотренной схеме главного дозирующего устройства, регулируют изменением проходных сечений главного и воздушного жиклеров. Увеличение проходного сечения воздушного жиклера способствует нарастанию коэффициента избытка воздуха, т. е. обеднению смеси, увеличение проходного сечения главного жиклера вызывает обогащение смеси. Самый выгодный состав смеси для характерных режимов работы двигателя достигается совместными действиями главного дозирующего устройства и системы холостого хода карбюратора.

Рис. 5. Схема главного дозирующего устройства с пневматическим торможением топлива:

1 поплавковая камера; 2 — воздушный жиклер; 3— эмульсионный канал; 4- распылитель; 5 — главный жиклер.

Современные карбюраторы имеют в основном схожие дозирующие системы (рис. 6). Они содержат большой 7 и малый 2 диффузоры, размещенные в главном воздушном канале 3, главный топливный жиклер 8, сообщенный с поплавковой камерой 7 и эмульсионной трубкой 6 с отверстиями, размещенной в эмульсионном колодце 9, воздушный жиклер 5 и распылитель 4, выходящий в главный воздушный канал 3.

Рис. 6. Главная дозирующая система

Постоянный состав горючей смеси обеспечивается путем пневматического торможения топлива с помощью воздушного жиклера 5, расположенного в верхней части эмульсионной трубки 6. При открывании дроссельной заслонки воздух поступает не только через диффузоры 7 и 2, но и через воздушный жиклер 5 в эмульсионную трубку б и тем самым снижает разрежение у топливного жиклера 8. Чем выше разрежение в диффузоре карбюратора, тем больше проходит воздуха через жиклер 5 и тем больше тормозится истечение топлива из поплавковой камеры.

Система не имеет подвижных элементов, поэтому она обладает достаточной стабильностью в работе карбюратора.

Главная дозирующая система двухкамерных карбюраторов (рис. 7) содержит главные топливные жиклеры 7 и 13, заглушки 12, размещенные в нижней части поплавковой камеры 2 и сообщенные с эмульсионными колодцами, в которых концентрично с зазором установлены эмульсионные трубки 3 и 7. Трубки представляют собой полые закрытые снизу цилиндры, имеющие радиальные отверстия на различной высоте.

Главные воздушные жиклеры 4 и 6 устанавливают преимущественно над эмульсионными трубками. Распылители выполнены в малых диффузорах 5 и снабжены каналами подвода горючей смеси. Дроссельные заслонки 14 и 15 соответственно первичной и вторичной камер кинематически связаны между собой таким образом, что вторая камера вступает в работу после открывания первой заслонки на 2/3 ее хода.

При небольшом открывании дроссельных заслонок разрежение в диффузорах невелико, поэтому оно не обеспечивает повышения уровня топлива в колодцах, а следовательно, и его подачу к распылителю. Топливо через фильтр 9 и топливный клапан 10, кинематически связанный с поплавком 11, поступает в поплавковую камеру, сообщенную через балансировочную трубку (канал) 8 с входным патрубком карбюратора.

В дальнейшем топливо из поплавковой камеры через жиклеры 1 и 13 поступает в эмульсионные колодцы, где смешивается с воздухом, и через распылители поступает в малые диффузоры карбюратора. Главная дозирующая система имеет широкие возможности для обогащения горючей смеси. Однако в ряде случаев на режимах больших нагрузок она не обеспечивает необходимый состав горючей смеси. С этой целью применяют дополнительные устройства.

Рис. 7. Главная дозирующая система двухкамерных карбюраторов

При работе ГДС воздух через главный воздушный жиклер 7 поступает в эмульсионные трубки, размещенные в эмульсионном колодце.

Рис. 8. Эмульсионная трубка.

Эмульсионная трубка (рис. 8) содержит корпус 4 с выходными отверстиями 2 и центральным каналом 5, посадочный 1 и уплотнительный 3 буртики. Короткая эмульсионная трубка, размещенная в колодце вторичной камеры, содержит четыре ряда отверстий, а длинная (в первичной) — пять.

ДОЗИРУЮЩИЕ УСТРОЙСТВА КАРБЮРАТОРА

Главное дозирующее устройство. Главное дозирующее устройство с утопленным жиклером уменьшает интенсивность нарастания расхода топлива при увеличении числа оборотов коленчатого вала двигателя. Проходные сечения карбюратора, служащие для истечения воздуха и топлива, обеспечивают максимальную мощность двигателя.

Рис. 19. Главное дозирующее устройство с компенсацией смеси различными способами
Предположим, что разрежение под диффузором простейшего карбюратора при большом числе оборотов равно 30 см, а при малом — всего лишь 2 см бензинового столба. Предположим также, что в последнем случае расход топлива будет недостаточным. В карбюраторе рассматриваемого типа жиклер расположен ниже уровня топлива в поплавковой камере, например, на 5 см, и при отсутствии разрежения в смесительной камере топливо поступает в распылитель под действием собственной силы тяжести, т. е. под давлением столба топлива высотой 5 см.
При работе двигателя с большим числом оборотов топливо поступает в распылитель под действием перепада давлений, равного 35 см (давление 30 см столба топлива создается за счет разрежения у жиклера и 5 см столба топлива — вследствие того, что жиклер опущен ниже уровня топлива на 5 см). При малом числе оборотов топливо поступает под действием перепада давлений 7 см столба топлива вместо 2 ем столба топлива, как у простейшего карбюратора (давление 2 см столба топлива создается за счет разрежения у жиклера и 5 см столба топлива — из-за того, что жиклер находится ниже уровня топлива на 5 см).
Таким образом, расход топлива незначительно увеличивается при большом числе оборотов коленчатого вала двигателя, но резко возрастает при малом числе оборотов.
После остановки двигателя необходимо предотвратить утечку топлива через жиклер, для чего его устанавливают в U-образной трубке, кромки которой расположены над уровнем топлива в поплавковой камере. Вместо U-образной трубки применяют также две концентрические трубки, образующие колодцы (рис. 19). Трубка или колодцы заполнены топливом, которое используют для обогащения смеси при разгоне автомобиля.
В главном дозирующем устройстве с пневматическим торможением топлива трубка и колодцы служат замедлителями расхода топлива при увеличении числа оборотов двигателя. Воздух, поступающий при этом в трубку или колодцы, снижает разрежение у жиклера и тем самым замедляет увеличение расхода топлива (пневматическое торможение), а также перемешивается с топливом и образует эмульсию. В результате пневматического торможения и эмульсирования топлива смесь постепенно обедняется.
При установке распылителя в воздушном канале жиклер отделен от диффузора и расположен в воздушном канале (рис. 19), соединенном с диффузором через верхнее отверстие и с атмосферой через боковое. Под действием разрежения в диффузоре воздух в смесительную камеру поступает одновременно через диффузор и боковое отверстие, поэтому около жиклера разрежение становится меньше разрежения в диффузоре. Правильное соотношение разрежений устанавливает конструктор подбором диаметров отверстий.
Предположим, что на малых числах оборотов коленчатого вала двигателя карбюратор отрегулирован так, что работает нормально. При повышении числа оборотов разрежение около жиклера возрастает и а величину, меньшую чем разрежение в диффузоре, вследствие чего расход топлива увеличивается меньше, чем расход воздуха. В результате при повышении числа оборотов коленчатого вала двигателя смесь постепенно обедняется.
Главное дозирующее устройство с изменением разрежения в диффузоре (рис. 19) обедняет смесь при увеличении числа оборотов вала двигателя в результате впуска в смесительную камеру дополнительного воздуха, вследствие чего замедляется увеличение разрежения в диффузорах и понижается расход топлива. Смесительная камера данного карбюратора может сообщаться с атмосферой через отверстие, закрываемое автоматическим клапаном. Клапан удерживается в закрытом положении под действием силы тяжести или тарированной пружины.
При работе двигателя с небольшим числом оборотов разрежение, создаваемое в смесительной камере, слишком мало для того, чтобы открыть клапан, и поэтому воздух поступает в камеру только через диффузор. Наоборот, при увеличении числа оборотов разрежение становится достаточным для поднятия клапана и сообщения смесительной камеры с атмосферой. Дополнительный воздух, проходящий через этот клапан, обедняет смесь, вследствие чего процентное содержание топлива в ней уменьшается.
Корректор. Карбюратор на заводе регулируют при температуре и атмосферном давлении, которые были во время испытаний опытных образцов. Однако температура и давление зависят от состояния погоды и высоты расположения дороги над уровнем моря. Кроме того, испытания проводят на определенном образце карбюратора, тогда как на автомобили устанавливают карбюраторы, несколько отличные по характеристикам от опытного образца.
Для улучшения смесеобразования некоторые карбюраторы имеют корректор, которым управляет водитель. Коррекция обычно состоит в изменении проходного сечения U-образной трубки главной дозирующей системы с помощью иглы. Уменьшая проходное сечение трубки, увеличивают разрежение у жиклера, а также расход топлива и наоборот.
Система холостого хода. Оба рассмотренных выше главных дозирующих устройства работают, когда двигатель развивает некоторую мощность, вследствие чего пуск и работа двигателя при малом числе оборотов становятся затруднительными, так как в этих режимах количество топлива, вытекающего из распылителя, невелико, а скорость воздушного потока недостаточна для распиливания топлива. Поэтому карбюратор имеет систему холостого хода (практически небольшой дополнительный карбюратор). Приготовленная в системе холостого хода горючая смесь поступает в задроссельное пространство основного карбюратора или в его смесительную камеру.
Воздушный канал, проходное сечение которого изменяют винтом холостого хода, позволяет водителю регулировать разрежение в системе и состав смеси на холостом ходу двигателя.
Пусковое устройство. Число оборотов двигателя и разрежение в смесительной камере при пуске очень малы, вследствие чего из распылителя вытекает недостаточное количество топлива. Если к тому же впускной трубопровод двигателя холодный, то некоторое количество топлива конденсируется на его стенках, причем тем больше, чем ниже температура окружающего воздуха. В этих условиях пуск холодного двигателя становится практически невозможным.
Для того чтобы обеспечить надежный пуск двигателя в холодное время года, необходимо резко обогатить горючую смесь при пуске. Смесь обогащают с помощью воздушной заслонки, ограничивающей количество воздуха и управляемой с места водителя.
Ускорительный насос и экономайзер. В простейшем карбюраторе в случае резкого открытия дроссельной заслонки при разгоне автомобиля из-за большей, чем у воздуха, инерции топлива смесь сильно обедняется. Однако на этом режиме работы двигателя необходимо ее обогащение и значительное увеличение мощности двигателя для того, чтобы обеспечить хорошую приемистость автомобиля (его способность быстро развивать скорость).
Для предотвращения обеднения смеси при резком открытии дроссельной заслонки используют небольшой запас топлива, которое скапливается в U-образной трубке или в колодцах во время работы двигателя с малым числом оборотов. При резком открытии дроссельной заслонки этот запас топлива поступает в смесительную камеру и обогащает горючую смесь.
В настоящее время для обогащения смеси используют также ускорительный насос, который при резком открытии дроссельной заслонки нагнетает дополнительное количество топлива через жиклер в смесительную камеру карбюратора.
Для обогащения смеси при больших нагрузках двигателя устанавливают экономайзер.

Устройство современного двигателя

Вспомогательные устройства карбюратора

Для улучшения характеристик карбюратора используют следующие дополнительные устройства, обеспечивающие приготовление горючей смеси постоянного состава на различных режимах работы двигателя:

• пусковое устройство;
• систему холостого хода;
• систему компенсации горючей смеси;
• экономайзер;
• ускорительный насос.

Пусковое устройство предназначено для значительного обогащения (а от 0,2 до 0,6) горючей смеси при пуске холодного двигателя и представляет собой воздушную заслонку с автоматическим клапаном.
Частота вращения коленчатого вала при пуске двигателя низкая, поэтому скорость воздуха, а следовательно, и разрежение в диффузоре небольшие. В смесительную камеру поступает недостаточное количество топлива и для компенсации смесь искусственно обогащают. Воздушной заслонкой перекрывают воздушный патрубок перед диффузором. При этом количество воздуха, поступающего в карбюратор, уменьшается, а разрежение значительно увеличивается, и топливо фонтанирует из распылителя главной дозирующей системы. При первых вспышках в цилиндрах открывается автоматический клапан, и воздух поступает в смесительную камеру. По мере прогрева двигателя постепенно открывается воздушная заслонка.
Система холостого хода служит для приготовления обогащенной (а от 0,7 до 0,9) горючей смеси при работе двигателя в режиме холостого хода при малой частоте вращения коленчатого вала, когда главная дозирующая система не работает.

Элементы карбюратора: а — работа воздушной заслонки; б — система холостою хода: 1— распылитель; 2 — воздушная заслонка; 3 — клапан; 4 — пружина; 5 — смесительная камера; 6 — дроссельная заслонка; 7— главный жиклер; 8 — воздушный жиклер системы холостого хода; 9 — топливный жиклер системы холостого хода; 10 — канал системы холостого хода; И и 13 — отверстия системы холостого хода; 12 — регулировочный винт.

Система холостого хода состоит из топливного канала, в начале которого установлен топливный жиклер, затем воздушный жиклер. Заканчивается канал двумя отверстиями: одно до дроссельной заслонки, второе за ней. С помощью регулировочного винта изменяется количество и качество горючей смеси.Система компенсации горючей смеси (рис. 45) обеспечивает приготовление обедненной (а от 1,05 до 1,1) экономичной горючей смеси постоянного состава при работе двигателя на средних нагрузках. В карбюраторах применяют следующие способы компенсации горючей смеси:

• регулирование разрежения в диффузоре;
• установка двух жиклеров — главного и компенсационного;
• пневматическое торможение истечения топлива в главной дозирующей системе.

При работе двигателя в режиме холостого хода разрежение в диффузоре при небольшом расходе воздуха незначительно и главная дозирующая система не работает. При этом значительно увеличивается разрежение в полости за закрытой дроссельной заслонкой. Эта полость сообщается через отверстие с полостью под дроссельной заслонкой посредством топливного канала, вследствие чего из поплавковой камеры начинает поступать топливо через топливный жиклер системы холостого хода, а через воздушный жиклер подсасывается воздух. Пузырьки воздуха, смешиваясь с топливом, образуют топливовоздушную эмульсию, которая поступает фонтаном через отверстие под дроссельной заслонкой в смесительную камеру. Получается обогащенная горючая смесь постоянного состава, что необходимо для устойчивой работы двигателя без нагрузки. Количество поступающей эмульсии можно изменять с помощью регулировочного винта.
При открытии дроссельной заслонки расход воздуха увеличивается, а разрежение в полости за заслонкой уменьшается, но обеднения смеси не происходит, так как оба отверстия канала системы холостого хода оказываются за дроссельной заслонкой и через них поступает эмульсия, чем и поддерживается необходимый состав горючей смеси. Тем самым обеспечивается плавный переход от режима холостого хода к режимам нагрузки.

Наибольшее распространение получил способ пневматического торможения истечения топлива, где в систему компенсации входит промежуточный колодец, в котором установлена эмульсионная трубка с калиброванными отверстиями в стенках. В верхней части трубки установлен воздушный жиклер.
При работе двигателя топливо поступает из поплавковой камеры через главный жиклер и заполняет промежуточный колодец и полость эмульсионной трубки. При движении воздуха через диффузор происходит истечение топлива из колодца. Скорость истечения увеличивается. Уровень топлива в колодце падает, и обнажаются отверстия эмульсионной трубки, че-
рез которые воздух через воздушный жиклер системы поступает в колодец, смешиваясь с топливом. Образуется топливовоздушная эмульсия, которая поступает через главный распылитель в смесительную камеру, образуя обедненную горючую смесь постоянного состава, что необходимо для работы двигателя на всем диапазоне средних нагрузок.

Дополнительные дозирующие устройства

Пусковое устройство. В процессе пуска число оборотов двигателя незначительно, скорость воздушного потока небольшая, тонкость распыливания и испарения топлива недостаточны. Пониженный температурный режим двигателя способствует конденсации части топлива на стенках впускного коллектора. Все это создает неблагоприятные условия для смесеобразования и вызывает затруднения при пуске непрогретого двигателя.

Следовательно, для облегчения пуска двигателя необходимо кратковременное обогащение смеси. Это достигается при помощи специального пускового устройства, которое у большинства карбюраторов представляет собой воздушную заслонку (рис. 5.14).

Рис. 5.14. Воздушная заслонка с клапаном

Воздушная заслонка устанавливается во входном патрубке карбюратора, перед диффузором. При пуске воздушная заслонка кратковременно прикрывается. Это понижает количество воздуха, проходящего через диффузор, но, повышая разрежение у распылителя, увеличивает подачу топлива и обогащает смесь.

Воздушная заслонка часто дополняется клапаном, предотвращающим переобогащение смеси. Клапаном является круглая пластина, нагруженная пружиной. Под действием пружины пластина прижимается к воздушной заслонке и закрывает имеющиеся в ней отверстия. Как только двигатель запустится, разрежение в диффузоре возрастает. При этом пружина сжимается, пластина отходит от заслонки и открывает отверстия. В карбюратор поступает дополнительный воздух, что препятствует переобогащению смеси.

С этой же целью воздушная заслонка выполняется иногда неравносторонней, устанавливается на оси эксцентрично, а с приводным рычагом соединяется через пружину. При увеличении разрежения в карбюраторе воздушная заслонка под действием воздушного потока на большую сторону заслонки открывается автоматически.

У ряда карбюраторов пусковое устройство представляет собой сочетание воздушной заслонки с клапаном и обогатительной иглы.

Ряд карбюраторов имеет автоматическое управление воздушной заслонкой. В процессе пуска положение воздушной заслонки изменяется автоматически при помощи температурного (в зависимости от температуры охлаждающей воды или впускного коллектора) или вакуумного (в зависимости от разрежения во впускном коллекторе или карбюраторе) регуляторов.

Устройство холостого хода. На холостом ходу и малых нагрузках двигателя дроссельная заслонка почти полностью прикрыта, но воздушная заслонка открыта. В этот период расход воздуха и разрежение в диффузоре малы и главное дозирующее устройство не работает. Обогащение смеси на холостом ходу и малых нагрузках достигается при помощи устройства холостого хода (рис. 5.15).

Рис. 5.15. Устройство холостого хода

Работа этого устройства основана на использовании значительных разрежений, которые создаются за дроссельной заслонкой, когда дроссель прикрыт.

В устройстве холостого хода топливный жиклер холостого хода 2 каналомсообщается с отверстием 4 в стенке карбюратора перед дросселем и отверстием за дросселем, проходное сечение которого регулируется винтом 3. В канал через воздушный жиклер 1 поступает воздух.

На холостом ходу и малых нагрузках под действием значительного разрежения за дросселем топливо из поплавковой камеры через жиклер 2 поступает в канал, смешивается с воздухом, поступающим через воздушный жиклер 1, и образует эмульсию. Эмульсия поступает в пространство за дросселем через отверстие и дополнительно распыливается воздухом, проникающим с большой скоростью через зазоры между дросселем и стенками карбюратора.

Отверстие 4 создает условия для плавного перехода от холостого хода к малым нагрузкам и постепенного обеднения смеси. При холостом ходе, когда дроссель прикрыт, через отверстие 4, расположенное выше дросселя, в канал проходит воздух. Воздух уменьшает разрежение в канале и притормаживает истечение топлива. Когда при переходе к малым нагрузкам дроссель незначительно открывается, а расход воздуха, проходящего через карбюратор, увеличивается, оба отверстия оказываются ниже дросселя. В этот период приток воздуха через отверстие 4 в канал прекращается и подача топлива несколько увеличивается.

По мере дальнейшего открытия дросселя разрежение за дросселем постепенно падает, но в горловине диффузора повышается. Одновременно подача топлива устройством холостого хода постепенно уменьшается, а затем прекращается. Подача топлива обеспечивается главным дозирующим устройством. Устройство холостого хода участвует в смесеобразовании при пуске двигателя.

Экономайзер. Максимальная мощность двигателя достигается на обогащенной смеси, когда коэффициент избытка воздуха составляет от 0.8 до 0.9. Но главное дозирующее устройство карбюратора рассчитывается на приготовление экономичной смеси. Следовательно, необходимо обогащать смесь от состава, соответствующего максимальной экономичности (что обеспечивается главным дозирующим устройством), до состава, при котором возможно реализовать максимальную мощность.

Для осуществления указанного требования современные карбюраторы имеют устройство, позволяющее автоматически обогащать смесь. Такое автоматическое устройство, обеспечивающее сочетание экономичной работы двигателя при неполных нагрузках и реализацию максимальной мощности при полных нагрузках, называется экономайзером.

Экономайзеры выполняются с механическим или пневматическим приводом. Экономайзер с механическим приводом включается в действие в зависимости от положения дросселя, а экономайзер с пневматическим приводом – в зависимости от разрежения в карбюраторе.

Принципиальная схема экономайзера с пневматическим приводом показана на рис. 5.16. Колодец экономайзера имеет клапан 2, шток 1, пружину 4 и поршень 3, размещенный в цилиндре. Цилиндр над поршнем сообщается через канал с пространством за дросселем. На малых и средних нагрузках под действием разности давлений поршень удерживается в верхнем положении. Клапан экономайзера при этом закрыт. С переходом к большим нагрузкам разность давлений значительно понижается. Поэтому поршень под действием разжимающейся пружины штока опускается, а клапан экономайзера открывается. Одновременно дополнительное топливо из колодца через жиклер экономайзера поступает к распылителю и обогащает смесь.

Рис. 5.16. Экономайзер с пневматическим приводом

Схема экономайзера с механическим приводом показана на рис. 5.17. Колодец экономайзера имеет клапан 2, шток 1, имеющий механическую связь с дроссельной заслонкой. На малых и средних нагрузках шток находится в верхнем положении. Клапан экономайзера при этом закрыт. С переходом к большим нагрузкам, при определенном положении дроссельной заслонки, на шток оказывается механическое воздействие. Шток опускается, а клапан экономайзера открывается. Одновременно топливо из колодца через жиклер экономайзера поступает к распылителю и смесь обогащается.

Рис. 5.16. Экономайзер с механическим приводом

Характер изменения мощности двигателя в зависимости от степени открытия дросселя у карбюраторов с экономайзерами показан на рис. 5.17.

Из рис. 5.17а следует, что экономайзер с механическим приводом (двигатель ЗИЛ-130, карбюратор К-88А) включается в работу при одном и том же положении дросселя (около 80% открытия), вне зависимости от числа оборотов двигателя. Если при п = 2000 об./мин перед включением экономайзера мощность еще продолжает расти, то при п = 1000 об./мин и 40% открытия дросселя мощность практически не возрастает. Это ухудшает приемистость двигателя и является недостатком экономайзера с механическим приводом.

Включение экономайзера с пневматическим приводом (рис. 5.17б) происходит при разных положениях дросселя. Если при п = 900 об./мин экономайзер включается, когда дроссель открыт на 30%, то при п = 2300 об./мин включение соответствует открытию дросселя на 60%. Это объясняется зависимостью включения экономайзера от разрежения во впускном коллекторе.

Рис. 5.17. Изменение мощности двигателя в зависимости от нагрузки и числа оборотов

Следовательно, по мере уменьшения оборотов включение экономайзера происходит при меньшем открытии дросселя. Это является преимуществом карбюратора с экономайзером, имеющим пневматический привод, так как дает возможность повысить мощность в те периоды, когда увеличение открытия дросселя не дает такой возможности.

Некоторые карбюраторы с двумя смесительными камерами имеют экономайзер, называемый эконостатом (рис. 5.18). Он устанавливается во вторичных камерах, дроссельные заслонки которых начинают открываться при нагрузке, близкой к полной.

Рис. 5.18. Эконостат

При работе на малых и в начале средних нагрузок дроссельная заслонка вторичных камер закрыта и поток воздуха в диффузоре отсутствует.

При средних нагрузках, когда топливной смеси, приготовленной первой камерой, недостаточно, дроссельная заслонка вторичной камеры начинает открываться. Увеличивающийся поток воздуха через диффузор создает разрежение, и начинает работать главная дозирующая система вторичной камеры 2, которая готовит обедненную смесь.

При нагрузке, близкой к полной, воздушный поток через вторичную камеру велик и разрежение создается не только в диффузоре, но и перед ним. Через распылительную трубку эконостата 1, выведенную выше диффузора, начинает распыляться топливо, поднимаемое из поплавковой камеры этим разрежением. Топливная смесь обогащается.

Насос-ускоритель. Необходимость резкого изменения режима работы двигателя при разгоне машины или во время движения по пересеченной местности вызывает необходимость резкого изменения степени открытия дросселя.

При резком открытии дросселя разрежение в диффузоре карбюратора значительно возрастает, а за дросселем падает. С увеличением разрежения в диффузоре расход воздуха, благодаря меньшей инерции, повышается в большей мере, чем расход топлива. Поэтому смесь кратковременно обедняется. Понижению разрежения за дросселем сопутствует понижение температуры смеси; часть топлива конденсируется, что также способствует кратковременному обеднению смеси.

Обеднение смеси влечет за собой падение мощности и ухудшение приемистости двигателя и может вызвать перебои в его работе. Для того чтобы резкое открытие дросселя не сопровождалось временным обеднением смеси, а приемистость двигателя не ухудшалась, большинство современных карбюраторов снабжается насосом-ускорителем.

Принципиальная схема насоса-ускорителя показана на рис. 5.19. Колодец насоса питается топливом из поплавковой камеры через впускной клапан 1. Колодец сообщается с распылителем и имеет выпускной клапан 2. Если клапан 2 открыт, топливо из колодца поступает в распылитель 5. Поршень насоса 3 постоянно отжимается пружиной вверх к штоку 4. Шток при помощи рычага связан с осью дросселя.

При постепенном открытии дросселя и медленном движении поршня топливо из колодца перетекает через впускной клапан 1 в поплавковую камеру; выпускной клапан 2 при этом закрыт. При резком открытии дросселя поршень перемещается вниз, под действием давления топлива впускной клапан 1 закрывается, выпускной клапан 2 открывается и дополнительная доза топлива из колодца поступает в смесительную камеру, обогащая смесь.

Рис. 5.19. Принципиальная схема насоса-ускорителя

Когда дроссель прикрывается, поршень насоса под действием пружины перемещается вверх; впускной клапан 1 при этом открыт и колодец заполняется топливом. Колодцем насоса-ускорителя иногда служит колодец экономайзера, но чаще колодец насоса выполняется самостоятельным.

Карбюратор К-88А

Карбюратор К-88А ( рис. 21 ), устанавливаемый на двигателях ЗИЛ-131, двухкамерный с балансированной поплавковой камерой.

Главная дозирующая система этого карбюратора работает по принципу пневматического торможения топлива в сочетании с работой системы холостого хода.

Обе смесительные камеры действуют одинаково на всех режимах работы двигателя.

Каждая камера обеспечивает приготовление смеси только для четырех цилиндров двигателя, что улучшает наполнение цилиндров горючей смесью.

Поплавковая камера, входной патрубок с воздушной заслонкой, экономайзер и насос-ускоритель являются общими для обеих камер карбюратора.

Рис. 21. Схема карбюратора К-88А: 1 — главный жиклер; 2 — поплавок; 3 — пружина; 4 — игольчатый клапан; 5 — сетчатый фильтр: 8 — балансировочный канал; 7 — блок жиклеров системы холостого хода; 8 — воздушный жиклер главной дозирующей системы; 9 — распылитель главной дозирующей системы; 10 — диффузоры; 11 — нагнетательный клапан; 12—распылитель насоса-ускорители; 13— полый винт; 14—отверстие распылителя; 15—отверстие в воздушной заслонке; 16 — воздушная заслонка; 17 — предохранительный клапан; 18 — регулировочная гайка; 19 — шариковый клапан экономайзера; 20— толкатель клапана экономайзера; 21 — шток для открытия клапана экономайзера; 22 — планка; 23 — шток поршня насоса-ускорителя; 24 — тяга; 25 — поршень насоса-ускорителя; 26 — впускной клапан; 27 — соединительное звено; 28 — рычаг дросселя; 29 — жиклер полной мощности; 30— дроссели; 31 — винты регулировки качества смеси; 32 — регулируемое отверстие системы холостого хода; 33— нерегулируемые отверстия системы холостого хода

В крышке карбюратора установлен фильтр 5. Поплавковая камера балансирована каналом 6. Рычаг поплавка 2 нагружен пружиной 3, что предотвращает повышение уровня топлива в поплавковой камере при движении автомобиля по неровной дороге.

В каждой камере имеются самостоятельные главное дозирующее устройство и система холостого хода.

Насос-ускоритель имеет два распылителя, по одному для каждой камеры. Дроссели обеих камер жестко закреплены на одной оси.

Карбюраторы К-88А имеют диафрагменный исполнительный механизм, являющийся частью пневматического центробежного ограничителя максимального числа оборотов коленчатого вала двигателя.

Принцип работы карбюратора

При пуске и прогреве холодного двигателя закрывают воздушную заслонку 16, одновременно при помощи рычагов и тяг, соединяющих заслонку с валиком дросселей, немного открываются дроссели 30, что облегчает пуск двигателя.

В смесительных камерах создается большое разрежение, в результате чего в обе камеры будет подаваться большое количество топлива из кольцевых щелей малых диффузоров и эмульсии из отверстий 32 и 33 системы холостого хода. Таким образом образуется богатая смесь.

В случае несвоевременного открытия воздушной заслонки после первых вспышек рабочей смеси в цилиндрах двигателя воздух, поступающий через предохранительный клапан 17 и отверстие 15 в воздушной заслонке, предотвратит чрезмерное переобогащение смеси.

На малых оборотах холостого хода двигателя дроссели немного открыты, поэтому скорость воздуха и разрежение в диффузорах 10 незначительны и топливо не будет вытекать из кольцевых щелей малых диффузоров.

За дросселями же создается большое разрежение, которое передается через отверстия 32 в эмульсионные каналы, а из них к жиклерам 7 холостого хода.

При этом топливо из поплавковой камеры поступает через главные жиклеры 1 в распылители 9, а из них к топливным (боковым) жиклерам 7 холостого хода.

Воздух, поступающий через воздушные жиклеры 7 холостого хода (верхние отверстия), перемешивается с топливом, полученная эмульсия движется по эмульсионным каналам и через регулируемые отверстия 32 выходит в задроссельное пространство обеих смесительных камер.

При прикрытых дросселях через отверстия 33 будет подсасываться воздух в эмульсионные каналы системы холостого хода, что улучшит эмульсирование топлива.

По мере открытия дросселей будет возрастать разрежение у отверстий 33 и из них также будет поступать эмульсия, что обеспечит плавный переход работы двигателя с малых оборотов к работе пол нагрузкой.

На малых и средних нагрузках двигателя. С увеличением открытия дросселей система холостого хода плавно уменьшает подачу эмульсии, но в это время возрастает скорость воздуха, а следовательно, и разрежение в диффузорах, и тогда вступает в работу главная дозирующая система.

Топливо из поплавковой камеры поступает через главный жиклер 1, а затем через жиклер 29 полной мощности, по пути смешиваясь с воздухом, поступающим через воздушный жиклер 8, и в виде эмульсии выходит через кольцевую щель малого диффузора.

Воздух, поступающий в распылители 9 через воздушные жиклеры 8 и через воздушные жиклеры 7 холостого хода, замедляет повышение разрежения у главного жиклера 1 и жиклера 29 полной мощности, поэтому тормозится вытекание топлива из главного жиклера, и горючая смесь будет обедняться до необходимого состава.

Таким образом происходит компенсация состава смеси.

С увеличением разрежения в диффузорах возрастает приток воздуха в распылители 9 через воздушные жиклеры 7 и 8, что вызывает большое торможение топлива.

При полной нагрузке двигателя , т. е. при полном открытии дросселей, обогащение смеси до мощностного состава обеспечивается работой экономайзера.

Как только дроссели будут открыты с просветом от стенок смесительных камер на 9 мм, шток 21 нажмет на толкатель 20 и откроет шариковый клапан 19 экономайзера.

Открытие клапана увеличит приток топлива к жиклерам 29 полной мощности, смесь обогатится до мощностного составa, и двигатель разовьет полную мощность.

При резком открытии дросселей кратковременное обогащение смеси, необходимое для быстрого разгона автомобиля, обеспечивается работой насоса-ускорителя.

Резкое открытие дросселей сопровождается быстрым перемещением вниз рычага 28, звена 27 и тяги 24, а вместе с ней планки 22, которая через пружину быстро опускает шток 23 с поршнем 25.

Поршень давит на топливо и впускной клапан 26 закрывается, а нагнетательный клапан 11 открывается. Топливо под давлением проходит через отверстие полого винта 13, а затем в виде тонких струй впрыскивается из распылителя 12 насоса-ускорителя через отверстия 14 в смесительные камеры.

Нагнетательный клапан 11 предотвращает поступление воздуха в колодец насоса-ускорителя при быстром подъеме поршня 25 насоса, а также подсос топлива из колодца насоса-ускорителя в смесительные камеры на больших оборотах при постоянном положении дросселей.

Передача усилия от планки 22 на поршень 25 насоса-ускорителя через пружину необходима для затяжного впрыска топлива и предохранения деталей привода от возможных поломок при резком открытии дросселей.

Ссылка на основную публикацию
Adblock
detector