0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Плюс и минус у светодиода

Плюс и минус у светодиода. Определяем полярность LED

Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.

Вы можете встретить два обозначения LED на принципиальной электрической схеме.

Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?

Цоколевка 5мм диодов

Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.

На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.

Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.

Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!

Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.

Как определить анод и катод у диодов 1Вт и более

В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.

Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.

Как узнать полярность SMD?

SMD активно применяются практических в любой технике:

  • Лампочки;
  • светодиодные ленты;
  • фонарики;
  • индикация чего-либо.

Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.

Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.

Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.

Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.

Как определить плюс на маленьком SMD?

В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.

Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.

Определяем полярность мультиметром

При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.

Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.

Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?

Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.

Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.

Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.

В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.

Другие способы определения полярности

Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.

Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.

Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.

Схема самодельного пробника

При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.

Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).

И последний способ изображен на фото ниже.

Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.

Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.

Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.

Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.

Светодиод как включить

Правильное включение светодиода

Светодиод — это диод способный светится при протекании через него тока. По-английски светодиод называется light emitting diode, или LED.

Цвет свечения светодиода зависит от добавок добавленных в полупроводник. Так, например, примеси алюминия, гелия, индия, фосфора вызывают свечение от красного до желтого цвета. Индий, галлий, азот заставляет светодиод светится от голубого до зеленного цвета. При добавке люминофора в кристалл голубого свечения, светодиод будет светиться белым светом. В настоящее время промышленность выпускает светодиоды свечения всех цветов радуги, однако цвет зависит не от цвета корпуса светодиода, а именно от химических добавок в его кристалле. Светодиод любого цвета может иметь прозрачный корпус.

Первый светодиод был изготовлен в 1962 году в Университете Иллинойса. В начале 1990-ых годов на свет появились яркие светодиоды, а чуть позже сверх яркие. Преимущество светодиодов перед лампочками накаливания не оспоримы, а именно:

* Низкое электропотребления – в 10 раз экономичней лампочек * Долгий срок службы – до 11 лет непрерывной работы * Высокий ресурс прочности – не боятся вибраций и ударов * Большое разнообразие цветов * Способность работать при низких напряжениях

* Экологическая и противопожарная безопасность – отсутствие в светодиодах ядовитых веществ. светодиоды не греются, от чего пожары исключаются.

Маркировка светодиодов

Рис. 1. Конструкция индикаторных 5 мм светодиодов

В рефлектор помещается кристалл светодиода. Этот рефлектор задает первоначальный угол рассеивания. Затем свет проходит через корпус из эпоксидной смолы . Доходит до линзы — и тут начинает рассеиваться по сторонам на угол, зависящий от конструкции линзы, на практике — от 5 до 160 градусов.

Излучающие светодиоды можно разделить на две большие группы: светодиоды видимого излучения и светодиоды инфракрасного (ИК) диапазона. Первые применяются в качестве индикаторов и источников подсветки, последние — в устройствах дистанционного управления, приемо-передающих устройствах ИК диапазона, датчиках. Светоизлучающие диоды маркируются цветовым кодом (табл. 1). Сначала необходимо определить тип светодиода по конструкции его корпуса (рис. 1), а затем уточнить его по цветной маркировке по таблице.

Рис. 2. Виды корпусов светодиодов

Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета. Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Таблица 1. Маркировка светодиодов

Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Светодиоды подключаются к источнику тока, анодом к плюсу, катодом к минусу. Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом, но бывают и исключения, поэтому лучше уточнить данный факт в технических характеристиках конкретного светодиода.

При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без токоограничивающего резистора. Для быстрого тестирования резистор с номинальным сопротивлением 1кОм подходит большинству светодиодов если напряжение 12V или менее.

При подключении светодиода необходимо соблюдать полярность, иначе прибор может выйти из строя. Напряжение пробоя указывается изготовителем и обычно составляет более 5 В для одного светодиода. Почему? Как уже ясно из названия, светодиод это не выпрямительный диод, и, хотя свойство пропускать ток в одном направлении у них общее, между ними есть значительная разница. Для того, что светодиод излучал в видимом диапазоне, у него значительно более широкая запрещенная зона, чем у обычного диода. А от ширины запрещенной зоны напрямую зависит такой паразитный параметр диодов, как внутренняя емкость. При изменении направления тока, эта емкость разряжается, за какое-то время, называемое временем закрытия, зависящее от размеров этой емкости. Во время разряда емкости, светодиодный кристалл испытывает значительные пиковые нагрузки на протяжении гараздо большего времени, нежели обычный диод. При последующем изменении направления тока на «правильное» ситуация повторяется. Поскольку время закрытия / открытия у обычных диодов значительно меньше, необходимо использовать их в цепях переменного тока, включая последовательно со светодиодами, для снижения негативного влияния переменного тока на светодиодный кристалл. Если светодиодное изделие не имеет встроенной защиты от переполюсовки, то ошибка подключения также приведет к снижению срока службы. В некоторые светодиоды токоограничивающий резистор встроен «с завода» и их сразу можно подключать к источнику 12 или 5 вольт, но такие светодиоды встречаются довольно редко и чаще всего к светодиоду необходимо подключать внешний токоограничивающий резистор.

Сразу следует предупредить: не следует направлять луч светодиода непосредственно в свой глаз (а также в глаз товарища) на близком расстоянии, что может повредить зрение.

Две главных характеристики светодиодов это падение напряжения и сила тока. Обычно светодиоды рассчитаны на силу тока в 20 мА, но бывают и исключения, например, четырехъкристальные светодиоды обычно рассчитаны на 80 мА , так как в одном корпусе светодиода содержаться четыре полупроводниковых кристалла, каждый из которых потребляет 20 мА. Для каждого светодиода существуют допустимые значения напряжения питания Umax и Umaxобр (соответственно для прямого и обратного включений). При подаче напряжений свыше этих значений наступает электрический пробой, в результате которого светодиод выходит из строя. Существует и минимальное значение напряжения питания Umin, при котором наблюдается свечение светодиода. Диапазон питающих напряжений между Umin и Umax называется “рабочей” зоной, так как именно здесь обеспечивается работа светодиода.

Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, поэтому нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт). Напряжение, указанное на упаковке светодиодов — это не напряжение питания. Это величина падения напряжения на светодиоде. Эта величина необходима, чтобы вычислить оставшееся напряжение, «не упавшее» на светодиоде, которое принимает участие в формуле вычисления сопротивления резистора, ограничивающего ток, поскольку регулировать нужно именно его.

Изменение напряжение питания всего на одну десятую вольта у условного светодиода (с 1,9 до 2 вольт) вызовет пятидесятипроцентное увеличение тока, протекающего через светодиод (с 20 до 30 милиампер).

Для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.

Величина тока для светодиода является основным параметром, и как правило, составляет 10 или 20 миллиампер. Неважно, какое будет напряжение. Главное, чтобы ток, текущей в цепи светодиода, соответствовал номинальному для светодиода. А ток регулируется включённым последовательно резистором, номинал которого вычисляется по формуле:

R — сопротивление резистора в омах. Uпит — напряжение источника питания в вольтах. Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается. 0,75 — коэффициент надёжности для светодиода.

Не следует также забывать и о мощности резистора. Вычислить мощность можно по формуле:

P — мощность резистора в ваттах. Uпит — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах. Uпад — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. . R — сопротивление резистора в омах.

Расчет токогораничивающего резистора и его мощности для одного светодиода

Типичные характеристики светодиодов

Типовые параметры белого индикаторного светодиода: ток 20 мА, напряжение 3,2 В. Таким образом, его мощность составляет 0,06 Вт.

Также к маломощным относят светодиоды поверхностного монтажа — SMD. Он подсвечивают кнопки в вашем сотовом, экран вашего монитора, если он с LED-подсветкой, из них изготовлены декоративные светодиодные ленты на самоклеющейся основе и многое другое. Есть два наиболее распостраненных типа: SMD 3528 и SMD 5050. Первые содержат такой же кристалл, как и индикаторные светодиоды с выводами, то есть его мощность 0,06 Вт. А вот второй — три таких кристалла, поэтому его нельзя уже называть светодиодом — это светодиодная сборка. Принято называть SMD 5050 светодиодами, однако это не совсем правильно. Это — сборки. Их общая мощность, соответственно, 0,2 Вт. Рабочее напряжение светодиода зависит от полупроводникового материала, из которого он сделан, соответственно есть зависимость между цветом свечения светодиода и его рабочим напряжением.

Таблица падения напряжений светодиодов в зависимости от цвета

По величине падения напряжения при тестировании светодиодов мультиметром можно определить примерный цвет свечения светодиода согласно таблице.

Последовательное и параллельное включение светодиодов

При последовательном подключении светодиодов сопротивление ограничивающего резистора рассчитывается также, как и с одним светодиодом, просто падения напряжений всех светодиодов складываются между собой по формуле:

При последовательном включении светодиодов важно знать о том, что все светодиоды, используемые в гирлянде, должны быть одной и той же марки. Данное высказывание следует взять не за правило, а за закон.

Что б узнать какое максимальное количество светодиодов, возможно, использовать в гирлянде, следует воспользоваться формулой

* Nmax – максимально допустимое количество светодиодов в гирлянде * Uпит – Напряжение источника питания, например батарейки или аккумулятора. В вольтах. * Uпр — Прямое напряжение светодиода взятого из его паспортных характеристик (обычно находится в пределах от 2 до 4 вольт). В вольтах.

* При изменении температуры и старения светодиода Uпр может возрасти. Коэфф. 1,5 дает запас на такой случай.

При таком подсчете “N” может иметь дробный вид, например 5,8. Естественно вы не сможете использовать 5,8 светодиодов, посему следует дробную часть числа отбросить, оставив только целое число, то есть 5.

Ограничительный резистор, для последовательного включения светодиодов рассчитывается точно также как и для одиночного включения. Но в формулах добавляется еще одна переменная “N” – количество светодиодов в гирлянде. Очень важно чтобы количество светодиодов в гирлянде было меньше или равно “Nmax”- максимально допустимому количеству светодиодов. В общем, должно выполнятся условие: N =

Как выбирать, подключать и монтировать светодиодную ленту.

Не хотите читать а хотите смотреть? Тогда кликаем сразу на «купить качественную светодиодную ленту» и переходим в магазин.

Как сделать выбор светодиодной ленты из множества предложений? Каков ее срок службы? Как светодиодную ленту подключать, паять и клеить На эти вопросы мы попытаемся ответить в этой статье.

Светодиодная лента пользуется огромной популярностью.

1. Потребитель увидел и осознал возможности, которые дает ему использование светодиодной ленты в декорировании или освещении его интерьера, экстерьера. Малые габариты, гибкость, огромный срок службы, хорошая светоотдача и разная цветопередача — вот основные положительные качества светодиодных лент.

2. Отсутствие достойной и качественной альтернативы светодиодным лентам.

3.Постоянная «промывка мозгов» с экранов телевизора и со страниц печати об энергосбережении.

4. Новые технологии в производстве, рост конкуренции приводят к снижению цены и большей доступности.

Область применения светодиодной ленты.

На сегодняшний день область применения светодиодной ленты ленты ограничивается только Вашей фантазией. Это может быть как основной свет, благодаря использованию светодиодов большой мощности, так и декоративная подсветка потолка, различных ниш, рабочей зоны кухни, например. Предприниматели охотно устанавливают светодиодную энергосберегающую ленту в витрины, стеллажи и другое торговое оборудование для подсветки товара, взамен морально устаревающих и постоянно «горящих» люминесцентных светильников.

Потрясающие световые эффекты получаются при использовании ленты с изменением цветности, так называемые RGB ленты. Цветность и яркость такой ленты изменяется пультом дистанционного управления, и это очень удобно.

Цветной монохромной (одного не меняющегося цвета) светодиодной лентой оформляют рестораны, другие — места отдыха, а во влагозащищенном исполнении такую ленту используют в качестве уличной декоративной подсветки. Автолюбители используют цветную светодиодную ленту для подсветки днища кузова автомобиля, дисков колес и номера автомобиля.

Ленту можно закладывать в алюминиевые профили, выпускаемые специально для этих целей.. Они имеют матовый рассеиватель, что обеспечивает мягкий рассеянный свет. Его можно использовать и как дополнительное и как основное освещение.

Ленту торцевого свечения закладывают в щель между потолочным или напольным плинтусом и стеной, освещая, таким образом, стену. Появились в продаже угловые профиля для ленты, которые можно использовать вместо плинтусов.

Другими словами, благодаря разнообразию вариантов исполнения светодиодная лента стала незаменимой и используется в оформлении практически каждого интерьера.

Выбор светодиодной ленты

Как сделать выбор светодиодной ленты из множества предложений? Каков ее срок службы? Какая лента лучше? Читаем здесь!

На фоне огромной популярности и востребованности светодиодной ленты создаются фирмы, специально ориентированные на продажи светодиодных светильников и лент в частности. Эти фирмы заполоняют интернет с новыми «самыми выгодными» предложениями. Сложно устоять, надо признаться. При этом, сотрудники этих фирм в своем большинстве не представляют, что такое светодиод в принципе и как с ним обращаться. Продукция заказывается в Китае и ввозится огромными партиями по минимальным закупочным ценам (выглядят все ленты одинаково, зачем платить больше?!).

Производитель в Китае, также учитывая «дикий» спрос на точечные светодиодные светильники и пытаясь находится в конкуренции и быть востребованным оптимизирует производство, используя самые дешевые компоненты и оборудование (вплоть до ручной пайки в ленту. светодиодов). На выходе получаем полу-брак. То же самое, кстати, можно сказать и про качество светодиодных ламп.

Чтобы не быть голословными, расскажем немного о компонентах светодиодных светильников и степени их важности для срока службы и яркости.

Само «сердце» светодиода — кристалл

Кристаллу присущ важнейший, определяющий срок службы светодиода термин «деградация» — его разрушение и падение светового потока с течением времени. Деградируют все без исключения кристаллы. Только у качественных световой поток за 10.000 часов уменьшится на 2% от первоначального значения, а у остальных за те же 10.000 часов — на 20%. Как правило, у «порядочных» производителей сроком службы принято считать время до спада светового потока до 80% от первоначального значения. У «непорядочных» — кому как вздумается, канонов нет.

Корпус кристалла и контактные соединения

Люминофор
Оптика

На качество светодиодных лент, и, соответственно, срок службы в огромной степени также влияет компетентность и «чистоплотность» производителя. В погоне за прибылью большинство азиатских производителей не брезгует (тут надо признать и вину недобросовестных заказчиков из России) устанавливать на светодиодные ленты возможно и качественные комплектующие, НО предназначенные для целей не связанных с освещением (например светодиоды для индикации), «разогнав» их запредельным током и получив хорошие выходные данные. Изделие будет служить. 1 месяц.

Таким образом, учитывая все вышеизложенное, можно сделать вывод что:

1. Светодиодная лента, которую Вы намерены использовать часто и подолгу должна стоить дороже, чем Вам хочется.

2. Дешевая лента — «кот в мешке». При правильном монтаже светодиодной ленты и периодическом ее использовании может прослужить и значительный срок. Но какой?

Так как же все-таки сделать верный выбор? Как определить качественную светодиодную ленту?

Совет №1
Совет №2
Совет №3

Также важно понимать, что светодиодная лента будет Вас радовать своим светом годами только при условии соблюдений ее правил монтажа.

Монтаж светодиодной ленты. Как паять и клеить ленту

Правильный монтаж ленты — 50% залога долгой жизни без болезней Вашей светодиодной подсветки (остальные 50% приходятся на качество самой светодиодной ленты).

Рекомендуем доверить монтаж подсветки профессионалам либо, если уж очень хочется все сделать своими руками, внимательно отнестись к нижеизложенным правилам.

Вот вообщем то и все советы! Приглашаем купить светодиодную ленту в интернет-магазине Новосвет 74.

Что верно в отношении #define?

Какова правильная полярность подключения светодиода?

a) Длинная ножка (анод) к «минусу» питания, короткая ножка (катод) – к «плюсу»

b) Длинная ножка (анод) к «плюсу» питания, короткая ножка (катод) – к «минусу»

Какие из этих слов мы используем, как синонимы?

a) Выводы b)Пины c)Контакты

В чем необходимо обязательно убедиться перед загрузкой программы в контроллер?

a) Плата физически подключена к компьютеру

b) Выбран порт, к которому подключена плата

c) В коде созданы макроопределения

d) Выбран тип платы

Каков синтаксис применения комментариев в коде?

a) Однострочный комментарий следует после //

b) Однострочный комментарий следует после ‘

c) Многострочный комментарий помещается между /* и */

d) Однострочный комментарий помещается в кавычки

e) Многострочный комментарий помещается между

f) Многострочный комментарий помещается между (и )

Что верно в отношении setup() и loop()?

a) setup() и loop() – обязательно должны присутствовать в коде

b) setup() выполняется многократно до специальной инструкции

c) loop() выполняется в бесконечном цикле после выполнения setup()

d) loop() выполняется столько раз, сколько указано в скобках

e) setup() и loop() – определения функций

f) setup() выполняется однократно после запуска контроллера

На какие элементы синтаксиса следует всегда обращать внимание?

a) круглые скобки после имени функции (независимо от наличия передаваемых параметров)

b) запятая, разделяющая параметры, передаваемые в функцию

c) фигурные скобки, обозначающие начало и конец кода, относящегося к определенной функции или управляющей конструкции

d) «;» в конце инструкций

Что верно в отношении функции pinMode()?

a) Эта функция нужна для конфигурации направления работы порта

b) Принимает параметром направление работы порта (вход или выход)

c) Принимает параметром номер пина, который конфигурируется

d) В эту функцию можно не передавать параметры

Что следует помнить при создании переменной?

a) Ей нужно задать тип

b) Ей нужно выбрать имя

c) Ей можно присвоить значение

d) Имя состоит из латинских букв (обязательно начинается с нее), цифр и символов «_»

e) Имя переменной нужно давать уникальное и осмысленное

f) Это инструкция, должна заканчиваться «;»

g) Значение переменной нельзя будет изменить

a) Это оператор присваивания, он делает оба значения равными большему из них

b) Это оператор сравнения

c) Это оператор присваивания, он помещает значение, расположенное справа от него, в переменную, стоящую слева

a) Это ключевое слово для определения типа данных как целое число

b) Это команда для создания переменной, в которой можно хранить значения от 0 до 100

c) Это ключевое слово для обнуления переменной

d) Это команда для создания переменной

Чем отличается создание макроопределения с помощью #define и переменной?

a) Макроопределение не займет памяти для данных

b) Макроопределение, в отличие от переменной, можно менять в ходе выполнения программы

c) Значение переменной можно изменять

d) Макроопределение нельзя создавать одновременно с переменными

Что верно в отношении функции digitalWrite()?

a) Принимает параметром уровень напряжения (высокий или низкий), который необходимо выставить на контакте

b) Уровень напряжения можно задать константами HIGH (напряжение питания, 5В для Arduino UNO) и LOW (0В)

c) Эта функция позволяет включать или выключать напряжение на определенном пине

d) В эту функцию можно не передавать параметры

e) Принимает параметром номер пина, которым нужно управлять

f) В качестве выставляемого напряжения можно указать любое напряжение в диапазоне 0—5В

Что верно в отношении #define?

a) Верное применение: #define STRING1 STRING2

b) Верное применение: #define STRING1 STRING2 STRING3

c) Верное применение: #define STRING1 STRING2;

e) Эта директива выполняется до компиляции кода

f) Эта директива служит для замены одной строки другой

g) Эта директива служит для создания переменной и присваивания ей значения

Статьи к прочтению:
  • Что знает о вас администрация общественной безопасности
  • Цифровая обработка изображений

Отношения

Похожие статьи:

В предыдущем примере использовался интуитивно понятный, но не рассмотренный ранее оператор «». Это один из операторов отношения, которые позволяют…

Элементами отношения являются кортежи, или строки, таблицы. Кортеж – это строка отношения. В отношении Branch каждая строка содержит 6 значений, по…

Полярность светодиода: как определить катод и анод самостоятельно

Профессионалы определяют минус и плюс у диода уже на автомате, пользуясь своими удобными методами. Чаще всего это прозвон тестером, тестирование транзисторными гнездами или подачей питания через резистор, ограничивающий силу тока. Иногда практикуется визуальное определение, если речь идет о конкретных знакомых марках и новых изделиях. Поэтому профи в советах об определении анода и катода у LED не нуждаются. А вот любителям и новичкам данная статья пригодится. Расскажем о популярных способах определить самостоятельно, где у диода анод и катод, правильности этих манипуляций и подводных камнях самостоятельного тестирования.

Общие сведения о полярности светодиода, и почему это важно

Зачем вообще заниматься определением «+» и «-» у светодиодов, почему их нормально не промаркируют или не выработают единую систему маркировки? Сейчас LED настолько массово производятся по всему миру, и они так дешевы, что производителям ни к чему усложнять себе жизнь какой-то особой маркировкой или соблюдением правил. Сделали — и ладно! Поэтому доверять ли пиктограммам, визуальной разнице в деталях диодов — решает каждый на свой страх и риск.

Радиолюбителям и любителям «собрать ракету на коленке» приходится приспосабливаться под такие жесткие условия. Приобретая новый диод, получая выпаянный б/у, никогда со 100% гарантией не поймешь, где у него анод и катод, пока не проверишь прибором. Если подключить без тестирования, то можно пробить LED, а цепь не заработает, потому что у диода ток идет только в одну сторону (исключение — так называемые моргающие светодиоды, двухцветники и ИК). Правильная распайка выводов даст нормальную рабочую схему.

Современные светодиоды, которые наиболее часто используются в работе

Светодиоды различают по мощности, цветности, типу корпуса и т.п. Наиболее часто используются в схемах диоды в корпусе DIP и SMD с малой мощностью и диаметрами от 3.5 и 5.0 до 10.0 мм. Хотя последнее время «доноры» для LED (фонарики, ленты, светильники, элементы подсветки) увеличили мощность лампочек от 0,5 Вт до 1 Вт и выше.

В корпусе DIP светодиод представляет собой маленькую лампочку с ножками, по которым определяют полярность. Но цоколевка у разных производителей не всегда совпадает с действительностью.

В корпусе SMD определить анод и катод еще сложнее, приходится при визуальном тестировании полагаться на адекватность производителя, который помечает катод срезом/скосом на корпусе или пиктограммами. А такому способу обозначения полярности тоже нельзя довериться на 100%. Уж больно много выявляется неожиданных сюрпризов.

Как определить полярность диода

Для самостоятельного определения полярности у диода применяют несколько способов с разной степенью надежности. Методы с применением приборов:

  • проверка тестером;
  • подача тока с ограничением через резистор;
  • встречается иногда и описание подключения осциллографа для этих целей.

Они отлично работают на элементах малой и средней мощности обычного характера свечения. Самые рабочие способы по адекватности результата.

Есть еще относительно надежные методы определения:

  • по технической документации;
  • по изображению полярности диода на схеме.

Стоит упомянуть недобросовестность производителей и недоступность документации при покупке в розницу. Этот способ узнать распиновку также не гарантирует точного определения плюса и минуса.

Совсем неудачные, но широко применяемые «народные» методы:

  • определение по длине ножек;
  • по размеру деталей внутри корпуса DIP;
  • по расположению среза/скоса на корпусе SMD;
  • по маркировке от производителя на диодах SMD и т.п.

Эти способы определения грешат неточностью, а иногда и вовсе невозможностью правильно узнать, где анод, а где катод у светодиода.

Как определить полярность тестером (мультиметром)

Чтобы узнать полярность у LED с помощью тестера (официальное название прибора мультиметр) используют несколько видов тестирования. Чем современнее тестер (цифровой), тем больше возможностей точно найти анод и катод на корпусе элемента, узнать его пригодность к работе (не пробит ли) и цвет свечения. Любой годный прибор покажет плюс и минус 3 разными способами:

  • через режим «проверка сопротивления» (аналоговый тестер);
  • через режим «прозвонка, проверка диода» (цифровой прибор);
  • проверка через транзисторные гнезда отсеков PNP и NPN (любой, где они есть).

Начнем с самого простого и надежного. На современных аппаратах есть возможность проверки с помощью отсеков для тестирования PNP и NPN транзисторов. Удобно, что можно обойтись без щупов. Для определения полярности нужно взять лампочку в DIP корпусе и вставить ее в гнезда «C» и «E». Если попасть анодом в E-эмиттер, а катодом в C-коллектор, то не пробитый рабочий светодиод ярко засветится. Если нет свечения, то нужно переткнуть ножки, сменив гнезда. Если смена не помогла, значит диод неисправен. Для элементов в корпусе SMD в гнезда втыкают обычные швейные иголки или тонкие гвоздики, а затем прикладывают к корпусу, как бы добавляя к нему эти самодельные ножки. Простота и надежность результатов этого метода делает его самым востребованным у профессионалов и тех, кто часто вынужден проверять пригодность и полярность у LED.

Другие виды тестирования задействуют разные режимы мультиметра и его щупы. Если включить режим омметра, когда измеряется сопротивление, то приложив щупы к ножкам, получится замер величины. Когда все сделано верно, и красный щуп попадет на анод, а черный на катод, то измерительная стрелка прибора скакнет до значений 1,7-1,8 кОм. Это диагностирует не только, где плюс и минус у диода, но и рабочее состояние. Во избежание вывода элемента из строя в случае неправильного подключения к щупам, дотрагиваться ими нужно быстро, не задерживая надолго. При обратном включении на табло прибора будет бесконечно большая величина сопротивления. А вот неисправный LED отобразит слишком малые значения сопротивления в обе стороны (как правило, 1). С таким работать уже нельзя.

На современных цифровых тестерах есть удобный режим «прозвонка, проверка диода». Прибор переключается в этот режим, а щупы должны попасть на верную полярность: красный на плюс, а черный — на минус. Это должно дать небольшое свечение светодиода и отображение измеренной величины, характерной для его цветности. Заодно можно проверить характеристики элемента (соответствие напряжения и тока по кривой вольтамперной характеристики).

Жаль, но методы с щупами срабатывают достоверно только на зеленых и красных диодах. Синие и белые лампочки можно проверить только через гнезда определения характеристик транзисторов (PNP/NPN). С многоцветными и двухцветниками с щупами придется повозиться в режиме диодной прозвонки. Для них следует искать общий плюс и минус, перебирая щупами выводы и фиксируя свечение.

Как определить полярность путем подачи питания

Для определения полярности LED в любом корпусе существует еще один надежный метод — подача тока с аккумулятора 3-6 В. Осторожные не рискуют брать батарейку больше 3 В. Для 12 В мощных светодиодов и 12 В не сильно страшны, но остальные надо беречь от пробоя. Самый удобный вид подачи питания на ножки диода — это старая круглая большая батарейка из настенных часов или компьютерной платы (маркировка CR2032). Ее просто вставляют между ножками элемента, если анод коснется плюса, а катод минуса, то о правильной работе исправного диода скажет яркое свечение, если нет, то он пробит.

Но! Нужно или сначала убедиться измерением, что батарейка не выдает ток выше 10-30 мА величиной, или использовать резистор от 400 до 600 Ом (иногда выше). Без ограничения тока легко пробить светодиод даже 4 В с аккумулятора, т.к. для напряжения диода в пределах 1,5-3,8 В максимально допустимой величиной тока с источника питания будет 10-30 мА. Многие считают, что кратковременное помещение диода на источник питания не спалит кристалл, но это может значительно снизить его ресурс, что потом чревато быстрым выходом из строя в готовой схеме. Вывод — используем резистор для ограничения тока батарейки, это точно убережет элемент от пробоя и потери работоспособности в дальнейшем.

Как определить полярность по внешнему виду

Есть способ «для ленивых», когда анод и катод определяется по:

  • длине ножек в корпусе DIP;
  • маркировке на корпусе;
  • расположению среза/скоса у катода или специальных графических обозначений — пиктограмм, смещенных к аноду.

С длиной ножек можно здорово не угадать, потому что производители, порой, используют нестандартную цоколевку. Обычно короткий штырек означает катод (К-короткий, К-катод), а длинный — анод. Это в идеале. Но профессионалы все проверяют приборами, не доверяя добросовестности производителей.

На корпусе также могут встретиться маркировки:

  • стандартные «+»/»-«;
  • «-» обозначается зеленой линией, точкой, а «+» — треугольником и т.п.

Маркировке дешевых или выпаянных ноунеймов лучше не доверять. Ведь производитель свободен в своем «творчестве»: хочешь — просто сделает утолщение одной из ножек цоколевки, хочешь — вообще никак не обозначит разницу между анодом и катодом в светодиоде.

Визуальное определение маркировки на корпусе SDM немногим лучше: срез или скос располагается ближе к катоду, тогда как теплоотвод на корпусе — к аноду. Бывает, что на SMD маленького размера изображены графические обозначения — пиктограммы, значки (треугольник, п-образная и т-образная линия), они указывают направление выхода тока, поэтому вершиной располагаются к катоду, а основанием — к аноду. Лучше всего тестировать элементы в таком типе корпуса приборами. Потому что гарантии соответствия маркировки действительности нет.

Определение полярности по технической документации

Если производитель надежный и на диоды идет сопроводительная техническая документация, то полярность там будет указана. Проблема в том, что документы идут только с большой партией, на розницу никто их давать не будет. Можно попробовать найти информацию о характеристиках в интернете, зная точно производителя и марку светодиода. Но тут опять возникает вопрос доверия производителю. Даже добросовестные поставщики не застрахованы от недобросовестности на производстве, бракованной партии, несоблюдения норм и регламента по маркировке.

Определяем, где плюс зрительно

Самый спорный и ненадежный способ определения распиновки диода — это визуально отличить в колбе LED размер деталей: маленькая назначается анодом, а большая — катодом. Хотя встречается огромное количество диодов, где все с точностью до наоборот. А могут попасться элементы столь странные, нетипичные, что визуальное определение цоколевки точно не поможет. Стоит ли рисковать исправностью светодиода и готовой схемы — решать любителям определять «на глазок».

Основные выводы

Полярность диода профессионалы никогда не определяют визуально, потому что модификации их настолько разные, а производители не удосуживаются соблюдать какие-то единые требования. Поэтому, перефразируя известное выражение, можно сказать «что белому светодиоду хорошо, то красному — смерть».

Самые надежные методы определения плюса и минуса требуют наличия аппаратуры: тестера и резистора для ограничения силы тока при проверке подачей питания. Для радиолюбителей и «самоделкиных» это не проблема, тестер у всех под рукой. А вот любителю проще 100% выявить анод и катод у светодиода через подачу питания, но только не напрямую, а через токоограничивающий резистор. Есть большая опасность спалить кристаллы или настолько значительно снизить срок их службы, что они потом быстро перегорят.

Подключение светодиодной ленты: схемы соединения и выбор блока питания

Довольно часто наш глаз привлекают украшенные с помощью ярких мигающих разноцветных огней фасады магазинов и лицевая сторона зданий. Эти огоньки являются не только декоративным, но и рекламным элементом.
Цветовое оформление достаточно разнообразно. Оно достигается тем, что используется такой современный материал, как светодиодные ленты, имеющие различные размеры и которым можно придать любые формы. К тому же, светодиодная лента воспроизводит разные световые эффекты, которые были запрограммированы для нее.

Содержание статьи:

  • Что представляет из себя светодиодная лента
  • Отличительные характеристики светодиодных лент
  • Подключение светодиодной ленты своими руками
  • Параметры при подключении светодиодных лент
  • Особенности как подключать светодиодную ленту
  • Как подключить светодиодную ленту к сети напряжением 220 В
  • Схема с одним блоком питания и одной лентой
  • Схема подключения с одним блоком питания и двумя лентами
  • Ошибки при подключения светодиодных лент

Что представляет из себя светодиодная лента

Основа ленты представляет собой гибкую полосу, по всей длине которой располагаются светодиоды, соединенные в виде параллельно-последовательной цепи с помощью гибких электрических дорожек.

Дорожки позволяют при необходимости и желании разрезать ленту на части, в каждой из которых может быть три или шесть диодов. Количество диодов зависит от подаваемого напряжения. Каждая лента имеет линии, по которым можно ее разрезать. Возле них расположены специальные площадки для подключения проводов.

На внутреннюю сторону светодиодной ленты приклеивают двусторонний скотч, с помощью которого облегчается установка и фиксация ленты на любые поверхности. Наверное, любому начинающему электрику будет интересно, как выполняется подключение светодиодной ленты через блок питания.

Вид и отличительные особенности светодиодной ленты.

Отличительные характеристики светодиодных лент

Современный строительный рынок предлагает в огромном количестве и разнообразии светодиодные ленты, которые различаются по многим признакам, среди которых следующие:

  1. Тип свечения (свет может быть холодным или теплым).
  2. Цветовые характеристики (один цвет или сочетание нескольких цветов).
  3. Количество светодиодов на одном метре ленты (от этого параметра зависит количество потребляемой энергии и светоотдача).

Подключение светодиодной ленты своими руками

Сегодня очень широко распространены и часто используются светодиодные ленты, длина которых 5 метров. Это не значит, что 5 метров – предел длины. Нет, ленты очень просто наращиваются или разрезаются на полоски определенной длины. При желании можно использовать даже ленту, длина которой всего несколько сантиметров.

Правила подключения светодиодной ленты.

Большим преимуществом светодиодной ленты является ее гибкость: ленту легко согнуть и придать ей любые формы. Она используется не только для украшения фасадов зданий и торговых точек. Ее принято использовать и для украшения домашнего интерьера. Нередко можно увидеть, как используется светодиодная лента для украшения подвесных потолков, подсветки кухни, аквариумов, террариумов и многого другого.

Параметры при подключении светодиодных лент

Каждую светодиодную ленту характеризует количество светодиодов, расположенных на одном метре ее длины. Маркировка изделий всегда указывает размер этого параметра.

Чем большее количество светодиодов расположено на одном погонном метре ленты, тем больший показатель светоотдачи и потребляемой мощности. Располагают светодиоды одним из двух способов: в один или два ряда.

Существует два вида светодиодов:

  1. Покрытые защитной оболочкой – слоем лака или силикона.
  2. Без защитной оболочки.

Питает светодиодную ленту постоянный ток, напряжение которого должно быть 12 или 24 В. По этой причине, выбирая ленту, обязательно нужно приобрести трансформатор, понижающий напряжение, если лента будет подключена к стандартной электрической сети.

Особенности использования и подключения светодиодных лент.

Подбирается светодиодная лента по параметру заявленной мощности, которая будет ею потребляться. Чаще всего этот параметр соответствует 12 или 24 В.

Как вы уже знаете из вышесказанного, каждый тип ленты имеет определенную заявленную мощность, которая рассчитывается на один погонный метр. Эту величину можно узнать, посмотрев паспорт изделия. Подбор необходимого блока питания осуществляется с учетом этих данных (он должен подходить к этим параметрам).

Если лента имеет большую длину, чем требуется, ее легко и просто разрезать на необходимые меньшие части, причем, каждая из этих частей подключается к своему трансформатору.

Для правильного выбора параметров блока питания нужно знать, какова полная мощность светодиодной ленты, которая подключается к сети. Каждая катушка имеет маркировку, содержащую все технические характеристики. Количество диодов, расположенных на одном метре ленты, прямо влияет на потребляемую мощность.

К примеру, если вы собрались подключать светодиодную ленту марки SMD LED 3528, вы должны представлять себе, что она может быть с плотностью светодиодов на одном метре в количестве 60, 120 или 240 штук. Соответственно, значение потребляемой мощности будет следующим: 4,8, 9,6 или 19,2 Вт на метр.

Производим следующие расчеты. Если нам необходима пятиметровая 3528 лента, которая имеет на каждом метре по 60 диодов (соответственно, на пятиметровой катушке их будет 300 штук, а напряжение 12 В, тогда необходимым источником питания будет: 4,8 х 5 = 24 Вт.

Специалисты рекомендуют брать блоки питания с запасом (25-30 %). Значит, в нашем случае оптимальному решению соответствует устройство, которое рассчитано на 36 Вт.

Особенности как подключать светодиодную ленту

Существует несколько особенностей, которыми отличается подключение светодиодных лент.

Показатель длины ленты. Вначале следует измерить расстояние, на которое нужно монтировать ленту. При этом непременно учитывается тот момент, что резать светодиодную ленту можно исключительно в определенных местах, которые обозначаются через положенное количество светодиодов.

Соблюдение полярности. Любые нагревательные приборы и лампы накаливания отличаются от светодиодной ленты тем, что она – полупроводниковое устройство, которое подключается с обязательным соблюдением полярности. Однако, не волнуйтесь, если вы ее подключите к сети неправильно, она не взорвется и не расплавиться – просто вы ее не сможете включить. Именно по этой причине смело подключайте питающие провода.

Правильная резка лент. Нередко бывает так, что светодиодная лента слишком длинная, и не подходит по размерам. Стандартная пятиметровая лента, которая продается в катушке, вам не нужна, поскольку вы подключаете к сети ее небольшой отрезок. Тогда ленту можно разрезать по специальному месту. Чаще всего линию разреза наносят через три светодиода, поскольку их запараллеливание производится по три штуки. Когда вы обрежете ленту не по линии, которую наметили на заводе-изготовителе, один-два диода с разомкнутой цепью просто не будут работать.

Выполнение соединения отрезков светодиодной ленты. Два куска ленты соединяются пайкой. Каждая линия реза оборудована специальными контактными площадками. Перед началом пайки каждая площадка зачищается и лудится. После чего каждая площадка, расположенная на торце одного куска ленты, соединяется с такой же площадкой, расположенной на другом куске. Для этого используются провода, диаметр которых не должен превышать 0,5 мм2.

Лучше всего разрезать ленту в отмеченных местах.

Например, вам нужно научиться подключению светодиодной ленты, для чего используется пайка. Предположите, что вы имеете три отрезка ленты, необходимые для подключения.

Вначале подберитесь к контактным площадкам, для чего снимите силиконовое защитное покрытие с ленты (если используется герметичный экземпляр), а затем припаивайте провода к соответствующим площадкам. Все три отрезка ленты подключаются последовательно.

Кроме того, есть некоторые модели светодиодных лент, соединяемые между собой без использования пайки. В этом случае применяются специальные разъемы – соединительные коннекторы. Коннекторы имеют довольно аккуратный вид.

Как подключить светодиодную ленту к сети напряжением 220 В

После того, как вы правильно выбрали источник питания, вам остается только подключить светодиодную ленту к нему. Существует две схемы подключения, которые будут рассмотрены ниже.

Схема с одним блоком питания и одной лентой

Стандартной длиной светодиодной ленты считается лента 5 метров, намотанная на специальную катушку. Внешний ее конец оборудован короткими проводами для подключения. Бывает и так, что провода не присоединены. В этом случае они припаиваются своими руками. Это сделать несложно: нужно два многожильного провода, имеющих разный цвет (красный провод – это «+», а черный провод – «-»). Необходимо отмерить нужную длину – они должны доставать до блока питания. Затем нужно зачистить провода с обеих сторон.

Используя канифоль и олово, нужно залудить провода и припаять к дорожкам ленты. Эта процедура производится с помощью маломощного паяльника. Постарайтесь сделать это быстро, иначе повышенная температура может отрицательно повлиять на светодиоды.

Особенности подключения светодиодной ленты.

Рекомендуется на свободных концах проводов укрепить наконечники НШВИ. Они помогают добиваться качественных контактом с клеммами, расположенными в блоке питания. При этом обязательно учитывайте то, что обжимается провод в наконечники специальным инструментом, который используется электромонтажниками.

Остается только качественно и надежно выполнить изоляцию мест, где производилась пайка. Для этого пригодится термоусадочная трубка. После чего светодиодная лента подключается к блоку питания.

Схема подключения с одним блоком питания и двумя лентами

Рассматриваем вариант, при котором требуется установка и подключение светодиодной ленты, имеющей восьмиметровую длину. Поскольку такой длины ленты продаются очень редко, нужно найти выход из этого положения.

При этом возможно одно единственное решение – покупаете две катушки со стандартной пятиметровой лентой, одну оставляете без изменений, а от второй ленты отрезаете три метра и соединяете их с пятиметровой лентой.

Вначале найдите линию разреза на второй ленте, возьмите обычные ножницы и разрежьте ее. Затем, используя провода и пайку, замкните разорванную цепь по технологии, которая описана выше. После пайки проводов и обоих кусков ленты можно начинать подключение.

Подключение этих двух кусков ленты производят параллельно. Некоторые делают не правильно — пытаются подключить последовательно: к концу одного куска ленты подключают конец второго.

Существует несколько вариантов, когда используется один блок питания для подсоединения большого количества светодиодных лент, расположенных от него на различных расстояниях. Это делается для подсветки витрин магазина, при одновременном освещении нескольких картин, которые висят не на одном расстоянии от источника питания и других случаях.

Удобным вариантом при этом является прокладка одной главной магистрали, к которой легко подсоединить каждую светодиодную ленту.

Ошибки при подключения светодиодных лент

Итак, вы ознакомились со способами подключения стандартной светодиодной ленты к электрической сети. нередко приходится подключать несколько лент. При этом у большинством мастеров совершается главная ошибка: они делают прямое соединение двух пятиметровых лент, получая одну, десятиметровую. Вы должны знать, что такое подключение неправильное.

Почему? Потому что провода, которые соединяют диоды, имеют очень тонкое сечение, рассчитанное на одно изделие. Когда вы соединяете ленты последовательно, то заметно увеличиваете сопротивление.

Из-за этого вторая и следующие ленты не будут давать яркого горения. К тому же, первая подключенная к источнику питания лента будет вынуждена пропускать чрезмерно увеличенный, а не номинальный ток, в следствии чего увеличивается теплообмен, ведущий к быстрому выходу из строя светодиодов.

До того, как начинать работы, связанные с подключением светодиодных лент, необходимо внимательно ознакомиться с существующими на сегодня правильными схемами соединения, иначе, неправильно соединив ленты, вы сокращается срок использования их во много раз.

Неправильное подключение, конечно, неопасно: не произойдет возгорания, вас не ударит током, но хотя бы ради экономии своих денежных средств, не торопитесь, изучите правильную схему, и установленные вами светодиодные ленты будут вас радовать в течение продолжительного времени.

Устройство и работа выпрямительного диода. Диодный мост.

18 Июн 2013г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем знакомиться с полупроводниковыми диодами. В предыдущей части статьи мы с Вами разобрались с принципом работы диода, рассмотрели его вольт-амперную характеристику и выяснили, что такое пробой p-n перехода.
В этой части мы рассмотрим устройство и работу выпрямительных диодов.

Выпрямительный диод – это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный. Однако, это далеко не полная область применения выпрямительных диодов: они широко используются в цепях управления и коммутации, в схемах умножения напряжения, во всех сильноточных цепях, где не предъявляется жестких требований к временным и частотным параметрам электрического сигнала.

Общие характеристики выпрямительных диодов.

В зависимости от значения максимально допустимого прямого тока выпрямительные диоды разделяются на диоды малой, средней и большой мощности:

малой мощности рассчитаны для выпрямления прямого тока до 300mA;
средней мощности – от 300mA до 10А;
большой мощности — более 10А.

По типу применяемого материала они делятся на германиевые и кремниевые, но, на сегодняшний день наибольшее применение получили кремниевые выпрямительные диоды ввиду своих физических свойств.

Кремниевые диоды, по сравнению с германиевыми, имеют во много раз меньшие обратные токи при одинаковом напряжении, что позволяет получать диоды с очень высокой величиной допустимого обратного напряжения, которое может достигать 1000 – 1500В, тогда как у германиевых диодов оно находится в пределах 100 – 400В.

Работоспособность кремниевых диодов сохраняется при температурах от -60 до +(125 — 150)º С, а германиевых – лишь от -60 до +(70 – 85)º С. Это связано с тем, что при температурах выше 85º С образование электронно-дырочных пар становится столь значительным, что происходит резкое увеличение обратного тока и эффективность работы выпрямителя падает.

Технология изготовления и конструкция выпрямительных диодов.

Конструкция выпрямительных диодов представляет собой одну пластину кристалла полупроводника, в объеме которой созданы две области разной проводимости, поэтому такие диоды называют плоскостными.

Технология изготовления таких диодов заключается в следующем:
на поверхность кристалла полупроводника с электропроводностью n-типа расплавляют алюминий, индий или бор, а на поверхность кристалла с электропроводностью p-типа расплавляют фосфор.

Под действием высокой температуры эти вещества крепко сплавляются с кристаллом полупроводника. При этом атомы этих веществ проникают (диффундируют) в толщу кристалла, образуя в нем область с преобладанием электронной или дырочной электропроводностью. Таким образом получается полупроводниковый прибор с двумя областями различного типа электропроводности — а между ними p-n переход. Большинство распространенных плоскостных кремниевых и германиевых диодов изготавливают именно таким способом.

Для защиты от внешних воздействий и обеспечения надежного теплоотвода кристалл с p-n переходом монтируют в корпусе.
Диоды малой мощности изготавливают в пластмассовом корпусе с гибкими внешними выводами, диоды средней мощности – в металлостеклянном корпусе с жесткими внешними выводами, а диоды большой мощности – в металлостеклянном или металлокерамическом корпусе, т.е. со стеклянным или керамическим изолятором. Пример выпрямительных диодов германиевого (малой мощности) и кремниевого (средней мощности) показан на рисунке ниже.

Кристаллы кремния или германия (3) с p-n переходом (4) припаиваются к кристаллодержателю (2), являющемуся одновременно основанием корпуса. К кристаллодержателю приваривается корпус (7) со стеклянным изолятором (6), через который проходит вывод одного из электродов (5).

Маломощные диоды, обладающие относительно малыми габаритами и весом, имеют гибкие выводы (1) с помощью которых они монтируются в схемах.
У диодов средней мощности и мощных, рассчитанных на значительные токи, выводы (1) значительно мощнее. Нижняя часть таких диодов представляет собой массивное теплоотводящее основание с винтом и плоской внешней поверхностью, предназначенное для обеспечения надежного теплового контакта с внешним теплоотводом (радиатором).

Электрические параметры выпрямительных диодов.

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

Iобр – постоянный обратный ток, мкА;
Uпр – постоянное прямое напряжение, В;
Iпр max – максимально допустимый прямой ток, А;
Uобр max – максимально допустимое обратное напряжение, В;
Р max – максимально допустимая мощность, рассеиваемая на диоде;
Рабочая частота, кГц;
Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде.

Разберем схему работы простейшего выпрямителя, которая изображена на рисунке:

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (), а функцию выпрямляющего элемента будет выполнять диод (VD).

При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока.

Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.
Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным.

Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости.

Заряжаясь импульсами тока во время положительных полупериодов, конденсатор () во время отрицательных полупериодов разряжается через нагрузку (). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке () будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим.
В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Диодный мост.

Диодный мост – это небольшая схема, составленная из 4-х диодов и предназначенная для преобразования переменного тока в постоянный. В отличие от однополупериодного выпрямителя, состоящего из одного диода и пропускающего ток только во время положительного полупериода, мостовая схема позволяет пропускать ток в течение каждого полупериода. Диодные мосты изготавливают в виде небольших сборок заключенных в пластмассовый корпус.

Из корпуса сборки выходят четыре вывода напротив которых расположены знаки «+», «» или «

», указывающие, где у моста вход, а где выход. Но не обязательно диодные мосты можно встретить в виде такой сборки, их также собирают включением четырех диодов прямо на печатной плате, что очень удобно.

Например. Вышел из строя один из диодов моста, если будет стоять сборка, то ее смело выкидываем, а если мост будет собран из четырех диодов прямо на плате — меняем неисправный диод и все готово.

На принципиальных схемах диодный мост обозначают включением четырех диодов в мостовую схему, как показано в левой части нижнего рисунка: здесь, диоды являются как бы плечами выпрямительного моста.
Такое графическое обозначение моста можно встретить еще в старых журналах по радиотехнике. Однако, на сегодняшний день, в основном, диодный мост обозначают в виде ромба, внутри которого расположен значок диода, указывающий только на полярность выходного напряжения.

Теперь рассмотрим работу диодного моста на примере низковольтного выпрямителя. В таком выпрямителе, с использованием четырех диодов, во время каждой полуволны работают поочередно два диода противоположных плеч моста, включенных между собой последовательно, но встречно по отношению ко второй паре диодов.

Со вторичной обмотки трансформатора переменное напряжение поступает на вход диодного моста. Когда на верхнем (по схеме) выводе вторичной обмотки возникает положительный полупериод напряжения, ток идет через диод VD3, нагрузку , диод VD2 и к нижнему выводу вторичной обмотки (см. график а). Диоды VD1 и VD4 в этот момент закрыты и через них ток не идет.

В течение другого полупериода переменного напряжения, когда плюс на нижнем (по схеме) выводе вторичной обмотки, ток идет через диод VD4, нагрузку , диод VD1 и к верхнему выводу вторичной обмотки (см. график б). В этот момент диоды VD2 и VD3 закрыты и ток через себя не пропускают.

В результате мы видим, что меняются знаки напряжения на вторичной обмотке трансформатора, а через нагрузку выпрямителя идет ток одного направления (см. график в). В таком выпрямителе полезно используются оба полупериода переменного тока, поэтому подобные выпрямители называют двухполупериодными.

И в заключении отметим, что работа двухполупериодного выпрямителя по сравнению с однопериодным получается намного эффективней:

1. Удвоилась частота пульсаций выпрямленного тока;
2. Уменьшились провалы между импульсами, что облегчило задачу сглаживания пульсаций на выходе выпрямителя;
3. Среднее значение напряжения постоянного тока примерно равно переменному напряжению, действующему во вторичной обмотке трансформатора.

А если такой выпрямитель дополнить фильтрующим электролитическим конденсатором, то им уже смело можно запитывать радиолюбительскую конструкцию.

Ну вот, мы с Вами практически и закончили изучать диоды. Конечно, в этих статьях дано далеко не все, а только основные понятия, но этих знаний Вам уже будет достаточно, чтобы собрать свою радиолюбительскую конструкцию для дома, в которой используются полупроводниковые диоды.

А в качестве дополнительной информации посмотрите видеоролик, в котором рассказывается, как проверить диодный мост мультиметром.

1. Борисов В.Г — Юный радиолюбитель. 1985г.
2. Горюнов Н.Н., Носов Ю.Р — Полупроводниковые диоды. Параметры, методы измерений. 1968г.
3. Пасынков В.В., Чиркин Л.К — Полупроводниковые приборы: Учеб. для вузов по спец. «Полупроводники и диэлектрики» и «Полупроводниковые и микроэлектронные приборы» — 4-е изд. перераб. и доп. 1987г.

Как это?

Тема раздела Курилка в категории Закуток; Сообщение от Митричь По остальному принцип тот-же. С этого места поподробней про три ключа и три светодиода. Где взять третий .

Опции темы
  • Версия для печати
  • Отправить по электронной почте…
  • Подписаться на эту тему…

С этого места поподробней про три ключа и три светодиода.
Где взять третий полупериод синусоиды?

у обычного диода есть паразитная емкость. У некоторых диодов она больше, у некоторых — меньше. У светодиодов, поскольку никто не оптимизировал их специально на маленькую паразитную емкость, эта самая емкость — большая. Поэтому, если через светодиод пропустить переменный ток достаточно высокой частоты — он его пропустит в обе стороны (возможно, одна полуволна будет выше). Как и обычный диод.
но вот вопрос — будет ли при этом такой диод светить или нет?

вам ответили неверно.
встречно включенные светодиоды не пропустят ток ни в одну сторону.

первое видео:
нам не показали 4 дополнительных диода

параллельно каждому светодиоду включен диод в обратном направлении
последовательно с каждым выключателем — тоже по диоду
ток переменный

второе видео — пока не думал над ним.

как Вы думаете, какой порядок она имеет? (можете заглянуть в справочник)
И на что она по Вашему в этом случае может влиять?

везде. Два встречно включенных диода не пропускают ток ни в каком направлении.
Да и всё остальное там напоминает измышления обкурившихся подростков

Абсолютно не важен порядок, как вырванная из контекста величина.
Важно, чтобы частота было того же порядка или выше, чем емкость. Тогда ёмкостное сопротивление — низкое.

Вы, извиняюсь, в каких единицах их меряете?

еще один ПЦ
Вообще-то, Вы слышали про комплексное сопротивление когда-нибудь?
И, вообще, про расчет радиотехнических цепей?

Блин, ну откуда столько ламеров (воинствующих дилетантов) берется?

Как завещал великий Ле. емкость в фарадах, частота — в герцах Хс = 1/wC = 1/(2*pi*f*C)
при f * С

осталось сделать следующий шажок:
учитывая, что практическая емкость p-n переходов измеряется пикофарадами и долями пикофарад (для высокочастотных приборов), прикинуть какие частоты должны генерироваться для токов в несколько миллиампер, которые зажигают светодиод.

и где Вы их там увидели, батенька-с?

Светодиод — прибор НЕ высокочастотный. Вообще не высокочастотный. И вообще не частотный, поэтому даже в справочнике можно не найти его паразитную емкость, т.к. она — относительно велика, но в схемах где используют светодиоды, не важна. У мощных светодиодов паразитная емкость будет выше. Насколько выше — я не знаю. Нет под рукой мощного светодиода. У обычного светодиода я только что намерял 9пкф, этого мало. Сверхяркого светодиода под рукой нету.

Мы можем предположить, что в батарейке (или в резьемчике) спрятан генератор, допустим 1 ггц. Если бы светодиод имел хотя бы 100пкф паразитной емкости (а лучше 1нф) — это было бы достаточного, чтобы оказывать весьма небольшое сопротивление току.

Проверьте — не напутал ли я с нулями? вроде нет. Будет светодиод светить, пропуская ток своей емкостью?

не придирайтесь к словам. Имелось в виду «у диодов, особенно сверхярких. «.

Надеюсь, вы не будете спорить, что в схеме применены (или хотя бы это можно допустить) именно сверхяркие светодиоды?

вотыменно. К чему я и клоню.

а как Вы думаете, за счет чего он вообще светит?
а как Вы думаете, если ток пустить мимо p-n перехода через эту Вашу параллельную паразитную ёмкость, что будет?

Батенька, давайте закругляться со всем этим бредом, а то, ведь, так и до НГ прообсуждаться можно. На дворе-то уже 31 число!

С наступающим!

ёлы-палы, всё никак не закончим.
А Вы видели когда-нибудь эти «сверхяркие»? Я могу вам прислать несколько разных. Они все на металлических подложках, а то и сразу на радиаторах. Потому что жрут бешеные токи и оченно греются. И вообще, выглядят немного по-другому.

Стоп машина, Новый Год!

Последний раз редактировалось 6wings; 31.12.2011 в 04:12 .

Вы уходите от ответа. Если ток пустить мимо — ответ очевиден. Но в светодиоде обкладками паразитной емкости является сам pn-переход.

Этих сверхярких несколько градаций. Мне попадались экземпляры на 200мА без радиатора. Выглядели как совершенно обычные (те что на видео). 9пкф я намерял на «обычном», которому около 10мА нужно.

такого ограничения нет. На вопрос ответит или кто-нибудь другой, или вы через несколько дней.

Автор видео или сделал слишком просто и рад, как удалось всех обмануть — в таком случае, если исключить монтаж, решения могут быть интересными.
Либо же наоборот: проделал очень серьезную подготовительную работу, чтобы подготовить хитрожопые компоненты и теперь горд, какое хорошее удалось отснять видео и как оно стремительно набирает рейтинг, а дискуссии обгоняют по флудовости «самолет на ленте транспортера»

если считать, что в каждом элементе схемы действительно что-то есть внутри (в выключателях — генераторы разных частот, в светодиодах — частотно-управляемые ключи, в т.ч. на микроконтроллерах), то даже в этом случае остается неясным вопрос — как эти внутренние устройства питаются?
Для того, чтобы всё это работало так, как мы видим, и выключатели, и светодиоды в «выключенном» состоянии должны шунтироваться весьма малыми сопротивлениями.
Откуда же тогда берутся напряжения для работы этих генераторов и ключей? Вряд ли падения напряжения на шунтах будет достаточным для их питания, учитывая то, что батарея 9 В. Особенно для схем с 3-мя светодиодами.
Вы понимаете, о чём я?

Последний раз редактировалось 6wings; 31.12.2011 в 11:30 .

Как-то так, да.
Автор — в любом случае молодец.
Интересно, каково будет разоблачение!
СД на видео есть в профиль, никакого «крупняка» там не присутствует.

однако, где-то выше утверждалось, что автор не переделывал батарейку. Стало быть, питание осуществляется постоянным током.
К тому же неясно, как можно разместить ёмкости 0.01 мФ в объеме СД?

Ага, также как сама принципиальная схема у него та, что на заднем фоне нарисована

Легко!
Светик давно в руки брали? Там 99% объема — компаунд. Если вертикально спаять кристалл, чип-кондер и т.д. и потом залить (при этом достаточно соблюсти пропорции корпуса) — определить разницу можно будет лишь взяв в руки, но никак не на видео.

я о том, что 0.01 мФ — довольно габаритная емкость, сравнимая по размеру с самим СД
Если есть под рукой, сделайте фото, положив для сравнения рядом СД

и, кстати, Вы понимаете как работает эта схема?
Если да, то хотелось бы услышать развернутый комментарий.

Нет, не вникал, в симулятор не загонял. Это просто перепост.
Но, навскидку, два светика на «полупериодах» одной переменки должны заводиться, третий — на полупериоде модуляции.

Во-первых, это утверждалось не самим автором, а человеком, который ссылается на несуществующее (ненагугливаемое) описание схемы на английском.
Во-вторых, при чтении коментариев можно видеть, что автор прямым текстом говорит, что там не постоянный ток. «At the start is DC (9V), but then I replace DC to something else «

Батарейку он не переделывал, генератор спрятан в разъеме, который подключается к батарейке.

Последний раз редактировалось chabapok; 31.12.2011 в 13:26 .

да. разъём, как элемент схемы, я как-то упустил из вида.

И это неправильно!
Всех мозгоимущих с наступающим!!

Конденсаторы 0,01 для поверхностного монтажа маленькие, причем даже стандартные маленькие. Стандартные 5 мм светодиоды гораздо больше по размерам. Светодиоды — существа высокочастотные, для многих рабочая частота порядка 1 гГц. Передатчики в оптоволокне посмотрите на каких частотах работают. Это если не белые брать, там где люминофор возбуждается.

К делу не относится, но в елочных гирляндах светодиод шунтируется встречно-параллельно включенным диодом для защиты от превышения обратно допустимого напряжения. Думаю что два ключа и два светодиода вполне можно заставить работать как показано только при помощи переменного тока и диодов, без всяких там емкостей и индуктивностей. Про три светодиода не смотрел, не знаю. Не зря там везде не лампочки а именно светодиоды используются.

Мне кажется что такая схема вполне будет работать, надо только «полярность подключения» светодиодов соблюсти, а то оба гореть будут одновременно, или наоборот никогда гореть не будут Картинку при сканировании немного подрезало, поэтому для информации — оба светодиода нарисованы сверху. Слева на схеме ключи, справа светодиоды.

Полярность светодиода: как определить где плюс, где минус, различаются ли анод и катод (длинная и короткая ножки) диода smd и прочих визуально, обозначение на схеме

Светодиоды активно используются в электронике. Они могут быть индикаторами или элементами световых эффектов. По диоду электрический ток проходит в прямом направлении, поэтому чтобы он загорелся, его следует правильно подключить.

Для этого нужно вычислить полярность диода – где находится плюс, а где минус.

Несоблюдение полярности и неправильное включение может привести к поломке светодиода.

Общие сведения о полярности светодиода и почему это важно

Светодиоды – это полупроводниковые приборы, которые при подаче напряжения пропускают ток только в одном направлении. Они являются низковольтными компонентами. Обладают следующими хаpaктеристиками:

  • двумя контактами – положительным и отрицательным;
  • полярностью – это способность пропускать ток в одном направлении.

Работает устройство от постоянного напряжения. Если его неправильно включить, может выйти из строя. Поломка происходит из-за того, что при несоблюдении полярности кристалл испытывает значительную нагрузку в течение длительного времени и деградирует.

На электронной схеме светоизлучающий диод графически маркируется как значок обычного диода, помещенный в кружок, с двумя стрелками, направленными наружу. Стрелки указывают на способность излучать свет.

Как определить, где плюс и минус

Определить полярность светодиода можно несколькими способами:

  • визуально (по длине ножки, по внутренней части колбы, по толщине выводов);
  • при помощи измерительного устройства (мультиметра, тестера);
  • путем подключения питания;
  • по технической документации.

Чаще всего применяется визуальный осмотр прибора. Производители стараются указывать маркировку и метки, по которым можно определить, где плюс и минус у светодиода. Все приведенные методы просты, и их может использовать человек без соответствующих знаний.

Определяем зрительно

Визуальный осмотр является самым простым способом определения полярности. Существует несколько видов корпусов светодиодов. Наиболее распространенный – цилиндрический диод с диаметром 3,5 мм и более. Чтобы определить катод и анод у диода, нужно рассмотреть прибор. Через прозрачную поверхность будет видно, что площадь катода (отрицательный контакт) больше, чем у анода (положительный). Если рассмотреть внутреннюю часть невозможно, стоит посмотреть на выводы, они также различаются по размерам. Катод будет больше.

Светодиоды для поверхностного монтажа активно используются в прожекторах, лентах, светильниках. Определить контакты в них можно также зрительно. Они имеют ключ (скос), который указывает на отрицательный электрод.

Важно! Чем массивнее и мощнее светодиод, тем больше вероятность визуального определения, где анод, а где катод.

У некоторых светодиодов может быть метка, указывающая на полярность. Это точка, кольцевая полоса, которая смещена к плюсу. У старых образцов есть заостренная с одной стороны форма, соответствующая положительному электроду.

С помощью подключения питания

Найти соответствующие электроды можно путем подачи напряжения малой величины. С помощью такого способа можно также определить исправность прибора. Потребуется источник постоянного тока (например, батарейка или аккумулятор). Светодиод нужно приложить к контактам. При правильном подключении и поднятии напряжения до 3 В диод будет загораться, а его насыщенность и яркость будет расти. Если подключение произошло неверно и полярность не соблюдена, светодиод не засветится.

Дополнительно можно подключить последовательно токоограничивающий резистор с сопротивлением выше 600 Ом. Это обезопасит светодиод от пробоя.

Применение мультиметра

Мультиметр – профессиональное устройство, помогающее определить не только плюс и минус светодиода, но и найти короткое замыкание в электросети, провести диагностику электронных компонентов, замерить основные параметры. С помощью мультитестера можно также определить цвет свечения у диода и пригодность к применению.

Произвести проверку мультиметром можно тремя способами:

  1. Переключатель мультитестера устанавливается в положение «Проверка сопротивления – 2 кОм». Щупами нужно коснуться электродов светодиода. Когда красный щуп коснется анода, а черный – катода, на дисплее появится число от 1600 до 1800. В ином случае или при неисправности на экране будет высвечена 1. Минус способа – отсутствует засветка кристалла.
  2. Переключатель нужно поставить в «прозвонка, проверка диода». Когда красный щуп коснется анода, а черный катода, светодиод начнет светиться. В ином случае диод никак не отреагирует.
  3. Для последнего способа щупы не потребуются. В большинстве моделей есть два гнезда, около которых есть обозначения Е и С – эмиттер и коллектор соответственно. Они используются для проверки транзисторов, но для светодиода это способ также подходит. Если в отверстие С будет помещен катод, светодиод загорится. Это самый быстрый и эффективный метод.

Важно! Кроме монохромных светодиодов выпускаются и многоцветные аналоги, у которых количество выводов может равняться 3 и 4. Их также можно проверить мультитестером и определить катод и анод. Двухцветные диоды с двумя выводами проводят ток в обоих направлениях. При разном подключении будут светиться различными цветами. При поиске катода и анода прибора с 3 и 4 выводами сложность заключается в поиске общего минуса или плюса. Щупами мультиметра проверяется каждый контакт и фиксируется свечение кристалла.

Определение с помощью технической документации

В документе к светодиоду можно найти достаточное количество информации о производителе, хаpaктеристиках, в том числе о полярности. На одно устройство паспорт выдается редко, его можно получить при покупке большой партии компонентов.

Найти информацию можно самостоятельно, если знать марку светодиода. По таблицам с техническими хаpaктеристиками данной модели можно найти способ подключения и где плюс, а где минус.

Отдельные случаи

Для определенных видов светодиодов существуют дополнительные способы проверки полярности.

Цоколевка 5-мм диодов

Маломощные 5-ти миллиметровые светодиоды довольно распространены. На них легко определить катод и анод. Если посмотреть на колбу, будет видно, что в ней две детали. Широкая часть – это катод, узкая – анод.

В новых элементах проверку можно произвести по длине ножек. Длинная ножка соответствует положительному электроду, короткая – отрицательному контакту.

В ином случае проверку можно произвести тестером.

Как определить анод и катод у диодов 1 вт и более

В современных фонарях и прожекторах используются мощные светодиоды с нагрузкой от 1 Вт или SMD, предназначенные для монтажа на поверхность. Для определения электродов нужно посмотреть на компонент. Модели с мощностью от 0,5 Вт имеют пометку. Анод обозначается плюсом.

Как узнать полярность smd

Внутреннюю часть SMD светодиода рассмотреть невозможно. Нужно проверять метки на корпусе устройства. В некоторых моделях катод может быть помечен срезом одной из сторон.

Помимо среза узнать полярность можно по следующим меткам:

  • теплоотвод – он располагается ближе к аноду внизу корпуса;
  • по пиктограмме.

SMD диоды можно использовать в любой технике – фонари, лампы, ленты, идентификация.

Как определить плюс на маленьком smd

На маленьких по размеру светодиодах smd может быть еще один способ обозначения. Может быть нанесена треугольная, П-образная или Т-образная пиктограмма на поверхность элемента. Нужно посмотреть, куда направлен треугольник или выступ. Угол указывает на направление тока. Соответственно, вывод является минусом.

Основные выводы

Светодиод является прибором, который активно используется в любой электронной технике. Он пропускает ток только в одном направлении. Поэтому важно соблюдать полярность подключения. Как узнать, какой электрод является анодом, а какой – катодом, можно несколькими способами – визуально, с помощью специальных приборов, по технической документации и при подаче напряжения. Каждый из приведенных способов имеет свои положительные стороны. Выбор наилучшего метода поиска полярности зависит от вида светодиода, сложившейся ситуации и наличия специального инструмента.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию
Adblock
detector