0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Последовательное и параллельное подключение светодиодов калькулятор

Последовательное и параллельное подключение светодиодов калькулятор. Давайте разберемся, как проводится расчет резисторов для светодиодов

Расчет резисторов для светодиодов — это весьма важная операция, которую необходимо проводить, прежде чем вы к источнику питания. От этого будет зависеть работоспособность как самого диода, так и всей схемы. Резистор необходимо включать в цепь со светодиодом последовательно. Предназначен этот элемент для ограничения протекающего тока через диод. Если резистор имеет номинальное сопротивление ниже требуемого, то светодиод выйдет из строя (перегорит), а если значение этого показателя будет выше необходимого, то свет от полупроводникового элемента будет слишком тусклым.

Расчет резисторов для светодиодов следует производить по следующей формуле R = (US — UL)/I, где:

  • US — напряжение источника питания;
  • UL — напряжение питания диода (обычно 2 и 4 вольта);
  • I — ток диода.

Обязательно следует убедиться, что выбранная величина электрического тока будет меньше максимального значения тока полупроводникового элемента. Прежде чем приступать к расчету, необходимо перевести эту величину в амперы. Обычно она в указана в миллиамперах. Таким образом, в результате вычислений будет получено значение в Омах. Если полученная величина не будет совпадать со стандартным резистором, то следует выбрать больший ближайший номинал. Либо можно соединить последовательно несколько меньших по номинальному сопротивлению элементов таким образом, чтобы суммарное сопротивление соответствовало расчетному.

Например, вот таким образом проводится расчет резисторов для светодиодов. Допустим, что у нас есть источник питания с выходным напряжением, равным 12 вольтам, и один светодиод (UL = 4 V). Требуемый ток равен 20 мА. Переводим его в амперы и получаем 0,02 А. Теперь можно приступить к расчету R = (12 — 4)/0,02 = 400 Ом.

Теперь рассмотрим, каким образом необходимо проводить расчет при последовательном соединении нескольких полупроводниковых элементов. Это особенно актуально при работе со сокращает расход электроэнергии и позволяет одновременно подключать большое количество элементов. Однако следует учесть, что все последовательно соединенные светодиоды должны быть одного типа, а блок питания — достаточно мощным. Вот таким образом следует производить расчет резисторов для светодиодов при последовательном соединении. Предположим, что у нас в цепи 3 элемента (напряжение каждого составляет 4 вольта) и 15-вольтовый блок питания. Определяем напряжение UL. Для этого необходимо сложить показатели каждого из диодов 4 + 4 + 4 = 12 вольт. Паспортное значение тока светодиода составляет 0,02 А, производим расчет R = (15-12)/0,02 = 150 Ом.

Очень важно помнить, что параллельное соединение светодиодов, мягко говоря, плохая идея. Все дело в том, что эти элементы имеют разброс параметров, каждый из них требует различное напряжение. Это приводит к тому, что расчет светодиода — это бесполезное занятие. При таком соединении каждый элемент будет светить со своей яркостью. Ситуацию может спасти только ограничительный резистор для каждого диода отдельно.

В заключение добавим, что по такому принципу рассчитываются все светодиодные сборки, в том числе и лампы на светодиодах. Если вы захотите самостоятельно собрать такую конструкцию, то данные расчеты для вас будут актуальными.

Так как для светоизлучающего диода (СИД, LED, светодиода) весьма желательно питание стабильным током, то не стоит его подключать непосредственно к источнику напряжения. Нужно обязательно стабилизировать или хотя бы ограничить ток протекающий через светодиод. Сложные импульсные стабилизаторы тока, с высоким КПД оставим напоследок, для начала пойдем по самому простому пути: используем единственный токоограничивающий резистор и сделаем расчет сопротивления резистора для светодиода.

На рабочем участке вольт-амперной характеристики светодиода, при небольшом изменении напряжения ток может меняться в несколько раз, то есть светодиод ведет себя как стабилизатор напряжения. Будем пренебрегать небольшим изменением падения напряжения на светодиоде и считать его постоянным.

Калькулятор расчета сопротивления резистора для светодиода

Сразу приведу калькулятор для тех кто не хочет углубляться в теорию.
Для расчета сопротивления резистора для светодиода нам потребуются следующие данные:

Введите все данные и получите сопротивление резистора в Омах.(Если нужно ввести дробные величины, то нужно использовать десятичную точку, а не запятую.)

Для питания светодиодов обычно приспосабливают источники питания на 5В или 12В. В принципе это может быть любой источник питания, главное чтобы его выходное напряжение было больше чем напряжение которое должно быть на светодиоде минимум на 10-15%, чем больше разница между напряжением БП и светодиода, тем будет лучше стабильность тока, но будет хуже КПД схемы.
Максимальный ток блока питания тоже должен быть равен или больше чем ток необходимый для светодиода. Если ток окажется меньше то светодиод не будет гореть в полную силу.
Падение тока на светодиоде — справочная величина, чем короче длинная волны испускаемого света тем выше напряжение падения. Так для светодиодов красного и зеленого свечения, величина падения 1,5 — 2,5В, для синих, ультрафиолетовых и белых 3 — 3,5В.
Ток светодиода также справочный параметр, но вместо него может указываться мощность светодиода в Ваттах. И чтобы получить ток нужно будет поделить мощность на напряжение. Например светодиод на мощность 1Вт и напряжение 3,3В должен потреблять 0,3А или 300мА тока.

Когда все данные получены расчет резистора для светодиода не составит труда: сначала определяем падение напряжение на резисторе, для этого из напряжения питания вычитаем падение на светодиоде. А теперь по закону Ома делим это напряжение на ток, в результате и имеем сопротивление.
Если напряжения указаны в Вольтах, а токи в Амперах, то сопротивление получиться в Омах. Если использовать миллиАмперы, то сопротивление будет в килоОмах.

Пример расчета сопротивления резистора для светодиода.

Для примера возьмем уже рассматриваемый нами светодиод и подключим его к источнику питания 5В: (5В-3,3В)/0,3А=5,67Ом. Так как самый близкий из выпускаемых номиналов резисторов 5,6 Ом, то используем его.
Теперь, когда известно сопротивление резистора для светодиода, рассчитаем его мощность, для этого проще всего возвести в квадрат протекающий через резистор ток и умножить на сопротивление.

Пример расчета мощности резистора для светодиода.

Продолжаем пример: 0,3А*0,3А*5,6 Ом=0,5 Вт.
В принципе, резистор на такую мощность можно купить, также можно поставить резистор на большую мощность, но часто мощности получаются большими тогда нам поможет групповое соединение резисторов, но это тема для другой статьи.

Включение нескольких светодиодов

Часто в разных лампах или системах подсветки, требуется использовать несколько одинаковых светодиодов, так вот можно сильно сэкономить на резисторах включив последовательно несколько светодиодов и один резистор. Конечно стоимость резистора невелика, но вот то что места один резистор потребует меньше будет большим плюсом.
Для такой схемы включения сопротивление резистора рассчитывается аналогично, только вместо падения напряжения на одном светодиоде нужно подставить сумму падений напряжений на всех последовательно включенных светодиодах.

Например используя источник питания на 12В можно включить последовательно три светодиода по 3,3В ещё 2В нужно будет погасить на резисторе. Если используются светодиоды на 1Вт, то мы получим сопротивление 2В/0,3А=6,67 Ом. Самый близкий номинал 6,8 Ом.

Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать . По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно . Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов :

Вспомним закон Ома:

R — сопротивление — измеряется в Омах

U — напряжение- измеряется в вольтах (В)

I — ток- измеряется в амперах (А)

Пример расчета резистора для светодиода:

Допустим, источник питания выдает 12 В: Vs=12 В

Светодиод — 2 В и 20 мА

На сопротивление рассеивается 10 В (12-2)

Посчитаем мощность сопротивления:

Необходимый резистор — R=500 Ом и Р=0,2 Вт

Расчет резистора для светодиода при последовательном соединение светодиодов

Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях.

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру.

Расчет резистора для светодиода при параллельном соединении

При плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

Расчет резистора для светодиода при последовательно-параллельное соединении

Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

Расчет резистора для понижения напряжения калькулятор. Расчет резистора для светодиода при различных соединениях

Так как для светоизлучающего диода (СИД, LED, светодиода) весьма желательно питание стабильным током, то не стоит его подключать непосредственно к источнику напряжения. Нужно обязательно стабилизировать или хотя бы ограничить ток протекающий через светодиод. Сложные импульсные стабилизаторы тока, с высоким КПД оставим напоследок, для начала пойдем по самому простому пути: используем единственный токоограничивающий резистор и сделаем расчет сопротивления резистора для светодиода.

На рабочем участке вольт-амперной характеристики светодиода, при небольшом изменении напряжения ток может меняться в несколько раз, то есть светодиод ведет себя как стабилизатор напряжения. Будем пренебрегать небольшим изменением падения напряжения на светодиоде и считать его постоянным.

Калькулятор расчета сопротивления резистора для светодиода

Сразу приведу калькулятор для тех кто не хочет углубляться в теорию.
Для расчета сопротивления резистора для светодиода нам потребуются следующие данные:

Введите все данные и получите сопротивление резистора в Омах.(Если нужно ввести дробные величины, то нужно использовать десятичную точку, а не запятую.)

Для питания светодиодов обычно приспосабливают источники питания на 5В или 12В. В принципе это может быть любой источник питания, главное чтобы его выходное напряжение было больше чем напряжение которое должно быть на светодиоде минимум на 10-15%, чем больше разница между напряжением БП и светодиода, тем будет лучше стабильность тока, но будет хуже КПД схемы.
Максимальный ток блока питания тоже должен быть равен или больше чем ток необходимый для светодиода. Если ток окажется меньше то светодиод не будет гореть в полную силу.
Падение тока на светодиоде — справочная величина, чем короче длинная волны испускаемого света тем выше напряжение падения. Так для светодиодов красного и зеленого свечения, величина падения 1,5 — 2,5В, для синих, ультрафиолетовых и белых 3 — 3,5В.
Ток светодиода также справочный параметр, но вместо него может указываться мощность светодиода в Ваттах. И чтобы получить ток нужно будет поделить мощность на напряжение. Например светодиод на мощность 1Вт и напряжение 3,3В должен потреблять 0,3А или 300мА тока.

Когда все данные получены расчет резистора для светодиода не составит труда: сначала определяем падение напряжение на резисторе, для этого из напряжения питания вычитаем падение на светодиоде. А теперь по закону Ома делим это напряжение на ток, в результате и имеем сопротивление.
Если напряжения указаны в Вольтах, а токи в Амперах, то сопротивление получиться в Омах. Если использовать миллиАмперы, то сопротивление будет в килоОмах.

Пример расчета сопротивления резистора для светодиода.

Для примера возьмем уже рассматриваемый нами светодиод и подключим его к источнику питания 5В: (5В-3,3В)/0,3А=5,67Ом. Так как самый близкий из выпускаемых номиналов резисторов 5,6 Ом, то используем его.
Теперь, когда известно сопротивление резистора для светодиода, рассчитаем его мощность, для этого проще всего возвести в квадрат протекающий через резистор ток и умножить на сопротивление.

Пример расчета мощности резистора для светодиода.

Продолжаем пример: 0,3А*0,3А*5,6 Ом=0,5 Вт.
В принципе, резистор на такую мощность можно купить, также можно поставить резистор на большую мощность, но часто мощности получаются большими тогда нам поможет групповое соединение резисторов, но это тема для другой статьи.

Включение нескольких светодиодов

Часто в разных лампах или системах подсветки, требуется использовать несколько одинаковых светодиодов, так вот можно сильно сэкономить на резисторах включив последовательно несколько светодиодов и один резистор. Конечно стоимость резистора невелика, но вот то что места один резистор потребует меньше будет большим плюсом.
Для такой схемы включения сопротивление резистора рассчитывается аналогично, только вместо падения напряжения на одном светодиоде нужно подставить сумму падений напряжений на всех последовательно включенных светодиодах.

Например используя источник питания на 12В можно включить последовательно три светодиода по 3,3В ещё 2В нужно будет погасить на резисторе. Если используются светодиоды на 1Вт, то мы получим сопротивление 2В/0,3А=6,67 Ом. Самый близкий номинал 6,8 Ом.

Подключать светодиоды — дело не из сложных. Для правильного подключения достаточно знать школьный курс физики и соблюсти ряд правил.

Главный параметр у любого светодиода — ток, а не напряжение, как считают многие. Светодиод необходимо питать стабилизированным током, величина которого всегда указана производителем на упаковке или в datasheet.

Ток на светодиодах ограничивается резистором — это самый дешевый вариант. Но есть и более «продвинутый» — использовать . По факту, использование резисторов — пережиток прошлого, ведь на сегодняшний день драйверов на любой вкус и цвет полным-полно и по самой привлекательной цене. К примеру, самые дешевые можно . Драйверы обеспечивают стабильный ток на светодиодах независимо от изменения напряжения на его входе.

Правильное подключение светодиода к драйверу следует так: сперва необходимо подключить светодиод к драйверу, только после этого включаем драйвер.

Существует несколько типов :

Вспомним закон Ома:

R — сопротивление — измеряется в Омах

U — напряжение- измеряется в вольтах (В)

I — ток- измеряется в амперах (А)

Пример расчета резистора для светодиода:

Допустим, источник питания выдает 12 В: Vs=12 В

Светодиод — 2 В и 20 мА

На сопротивление рассеивается 10 В (12-2)

Посчитаем мощность сопротивления:

Необходимый резистор — R=500 Ом и Р=0,2 Вт

Расчет резистора для светодиода при последовательном соединение светодиодов

Минус светодиода подключается с плюсом последующего. Так соединить можно до бесконечности. При падение напряжения на светодиоде умножается на количество диодов в цепи. Т.е. если у нас 5 светодиодов с номинальным током 700 мА и падением напряжения 3,4 Вольта, то и драйвер нам необходим на 700 мА 3,4*5=17В

Это мы рассмотрели какие можно подбирать драйверы, а теперь вернемся непосредственно к тому, как произвести расчет резистора для светодиода при таких соединениях.

Выше мы рассмотрели расчет резистора для светодиода (одного). Пр последовательном соединении расчет аналогичный, но необходимо учитывать, что падение напряжения на резисторе меньше. Если «на пальцах», то от источника питания Мы отнимается суммарное падение напряжения на светодиодах Vl=3*2=6В. При условии, что у нас источник выдает 12В, то 12-6=6В.

Т.е. нам нужен резистор на 300 Ом и 0,125 Вт.

Характеристики светодиода и источника питания аналогичные предыдущему примеру.

Расчет резистора для светодиода при параллельном соединении

При плюс светодиода соединяется с плюсом другого, минус с минусом. При таком соединении ток суммируется, а падение остается неизменным. Т.е. если мы имеем 3 светодиода 700 мА и падением 3,4 В, то 0,7*3=2,1А, то нам потребуется драйвер с параметрами 4-7 В и не менее 2,1А.

Расчет резистора для светодиода в этом случае аналогичен первому случаю.

Расчет резистора для светодиода при последовательно-параллельное соединении

Интересное соединение. При таком расположении диодов несколько последовательных цепочек соединяются параллельно. Необходимо знать, что количество светодиодов в цепочках должно быть равным. Драйвер подбирается с учетом падения напряжения на одной цепочке и произведению тока на количество цепочек. Т.е. 3 последовательные цепи с параметрами 12В и 350 мА подключаются параллельно, напряжение остается 12В, а ток 350*3=1,05А. Для долгой работы чипов нам нужен светодиодный драйвер с 12-15В и током 1050мА.

Расчет резистора для светодиода в этом случае будет таким:

Резистор аналогичен при последовательном соединении, однако, стоит учитывать, что потребление от источника питания увеличится в три раза (0,2+0,2+0,2=0,06А).

При подключении светодиодов через резистор нужен стабилизированный источник питания, т.к. при изменении напряжения будет изменяться и ток, идущий через диод.

Существует еще один способ соединения светодиодов — параллельно-последовательное с перекрестным соединением. но это достаточно сложная тема в расчетах, поэтому не буду ее тут раскрывать. Если потребуется, конечно, опишу, но думаю это нужно только узкому кругу специалистов.

В сети можно найти много онлайн-калькуляторов, которые Вам рассчитают сразу резисторы. Но слепо верить им не стоит, а лучше перепроверить, следуя поговорке: «Хочешь сделать это хорошо, сделай это сам».

Видео на тему правильного расчета резисторов для LEDs

Расчет резисторов для светодиодов — это весьма важная операция, которую необходимо проводить, прежде чем вы к источнику питания. От этого будет зависеть работоспособность как самого диода, так и всей схемы. Резистор необходимо включать в цепь со светодиодом последовательно. Предназначен этот элемент для ограничения протекающего тока через диод. Если резистор имеет номинальное сопротивление ниже требуемого, то светодиод выйдет из строя (перегорит), а если значение этого показателя будет выше необходимого, то свет от полупроводникового элемента будет слишком тусклым.

Расчет резисторов для светодиодов следует производить по следующей формуле R = (US — UL)/I, где:

  • US — напряжение источника питания;
  • UL — напряжение питания диода (обычно 2 и 4 вольта);
  • I — ток диода.

Обязательно следует убедиться, что выбранная величина электрического тока будет меньше максимального значения тока полупроводникового элемента. Прежде чем приступать к расчету, необходимо перевести эту величину в амперы. Обычно она в указана в миллиамперах. Таким образом, в результате вычислений будет получено значение в Омах. Если полученная величина не будет совпадать со стандартным резистором, то следует выбрать больший ближайший номинал. Либо можно соединить последовательно несколько меньших по номинальному сопротивлению элементов таким образом, чтобы суммарное сопротивление соответствовало расчетному.

Например, вот таким образом проводится расчет резисторов для светодиодов. Допустим, что у нас есть источник питания с выходным напряжением, равным 12 вольтам, и один светодиод (UL = 4 V). Требуемый ток равен 20 мА. Переводим его в амперы и получаем 0,02 А. Теперь можно приступить к расчету R = (12 — 4)/0,02 = 400 Ом.

Теперь рассмотрим, каким образом необходимо проводить расчет при последовательном соединении нескольких полупроводниковых элементов. Это особенно актуально при работе со сокращает расход электроэнергии и позволяет одновременно подключать большое количество элементов. Однако следует учесть, что все последовательно соединенные светодиоды должны быть одного типа, а блок питания — достаточно мощным. Вот таким образом следует производить расчет резисторов для светодиодов при последовательном соединении. Предположим, что у нас в цепи 3 элемента (напряжение каждого составляет 4 вольта) и 15-вольтовый блок питания. Определяем напряжение UL. Для этого необходимо сложить показатели каждого из диодов 4 + 4 + 4 = 12 вольт. Паспортное значение тока светодиода составляет 0,02 А, производим расчет R = (15-12)/0,02 = 150 Ом.

Очень важно помнить, что параллельное соединение светодиодов, мягко говоря, плохая идея. Все дело в том, что эти элементы имеют разброс параметров, каждый из них требует различное напряжение. Это приводит к тому, что расчет светодиода — это бесполезное занятие. При таком соединении каждый элемент будет светить со своей яркостью. Ситуацию может спасти только ограничительный резистор для каждого диода отдельно.

В заключение добавим, что по такому принципу рассчитываются все светодиодные сборки, в том числе и лампы на светодиодах. Если вы захотите самостоятельно собрать такую конструкцию, то данные расчеты для вас будут актуальными.

Номинал резистора для светодиода на 12 вольт

Смотри статью в журнале Радио номер 6 за 2006 год стр.57. Думаю поможет. :super:

Прочитал, там получается на питание 4,5 вольта, три батарейки по 1.5
а мне надо от 12 вольт

Так нельзя подключать диоды. Замучаешся менять.
Надежнее всего подключать все 8 светодиодов параллельно на 12в через гасящие резики на каждом! светодиоде предварительно подобранных индивидуально!
Прикидываем- каждый светодиод врежиме насыщения потребляет окола 80ма(на подложке 4 кристалла 4*20=80ма). Uпит.-Uнас.=Uпад. делится на ток получаем номинал резистора 110ом. Uнас=3,2в, и то от разных производителей может отличаться. Для определения Uнас. собирается схемка светодиод+перемен. резистор — последовательно подключается к источнику 12в, уменьшаем сопртивление и контролируем напряжение на светодиоде.Когда напряжение перестанет расти это и будет Uнас., заодно можно и замерить сопротивление какое получилось.Резисторы ставить в переноску нужно соответствующей мощности. :super:

И всё таки правильно будет
Включайте последовательно по 3 штуки + токоограничительный резистор порядка 70 Ом.

Если светодиоды включать по отдельности через резистор к аккумулятору, то мощность потребляемая от него будет больше в 3 раза и большая часть этой мощности будет рассеиваться на токоограничительных резисторах. 8)
Хотя конечно если кроме освещения Вам нужно ещё и отопление . :rotate:

В таком включение они будут светить не на 100%, зачем тогда применять СВЕРХЯРКИЕ светодиоды? 😉

В таком включение они будут светить не на 100%, зачем тогда применять СВЕРХЯРКИЕ светодиоды? 😉
Я вышепроцитированного не писал(а).
А яркость, подбирая токоограничительный резистор, можно установить любую , 50-100-150 % , пока диод не расплавиться.

неправильно скомпоновал ответ 😳

Это тоже один из вариантов, игнорируя надежностью.Для гаража пойдет.
P.S. Вообще эта тема не для длительного обсуждения, сам автор вопроса выберет то что ему по душе.

«Сверхяркий светодиод» это не параметр а весьма общее название!
При каком токе он будет работать оптимально? Чтобы ответить на этот вопрос нужно знать его маркировку,я встречал белые светодиоды на номинальный ток от 20 до 1500мА,какие у вас?
Так-же есть яркие светодиоды с непосредственным питанием от 12 вольт (регулятор тока внутри них).

Откликнулся потому,что сам недавно делал ночник из десяти светодиодов на 220 вольт 😯 номинальный ток (20мА) давать не стал,было очень ярко,отрегулировал на 5мА. 🙂

Самый верный путь — включение через стабилизатор тока, всего-то 2 транзистора (типа 315) и 3 резистора. Всё остальное ерунда, будете менять диоды регулярно.
Николай

Вот нашел интересный калькулятор. все стало сразу понятно

Самый верный путь — включение через стабилизатор тока, всего-то 2 транзистора (типа 315) и 3 резистора. Всё остальное ерунда, будете менять диоды регулярно.
Николай

а схема с отдельным подключением резистора к каждому светодиоду будет работать?
Работать будет, но не должна по этическим причинам 😯 ,
при таком включении более 75 % источника питания будет рассеиваться на токоограничительном резисторе и теряется сам смысл применения светодиодов как экономичного осветительного прибора проще подобрать соответствующую лампочку.
Токоограничительный резистор нужно подключать ни к каждому диоду, а к группе из трёх последовательно соединённых диодов.

Например напряжение на аккумуляторе 13 Вольт напряжение на одном диоде 3,5 Вольта ток через диод 20 ma
(13-3*3.5)/0.02=254 Ом
и никаких схем и калькуляторов [/quote]

В схеме с токоограничительным резистором изменение тока при изменении напряжения аккумулятора вычисляется:
dJ= dU/(Uакк-N*Uдиода)/Jдиода

напряжение на аккумуляторе 13 Вольт напряжение на одном диоде 3,5 Вольта ток через диод 20 ma
и изменении напряжения + — 1 Вольт
изменение тока dJ=1/(13-3*3/5)/20=3.6 mA
Вполне приемлемо, они и не такое выдерживают.
P.S. стабилизатор тока конечно лучше , но у каждой медали есть 3 стороны. 😉

. Хм, может имеется в виду, что оно не стабильное, а постоянное? А то в моем старенком авто напряжение прыгало от 11 до 13 с копейками, в зависимости от нагрузки
————————————
Постоянное-переменное,стабильно е-не стабильное.
Выбирайте сами какое в вашем автомобиле,но не забывайте,что генератор имеет стабилизатор и акмулятор имеет номинал 12 вольт. (момент старта двигателя не учитываем).

См. п.1. Вот за это его давно уже не читаю. За редкими исключениями.
————————————
А вот это зря,последние годы там исключительно про подключение светодиодов к батарейке 🙂

Ну если Вы имеете ввиду Жигули или Москвич, там действительно нет ничего, я же имел ввиду автомобили. Может Вам покажеться странным, но там даже компьютеры имеются. А в приборных панелях стрелки приборов вращают шаговые моторы, которые управляются процессорамиа не тросами. Соответстаенно эти устройства оснащены стабилизаторами. А вот в бортовой сети напряжение поддержать очень трудно, да Вы, пожалуй и сами знаете, что в любой системе авторегулирования без гистерезиса не обойтись. Также я сказал, имеются импульсы положительной и отрицательной полярностей, можете проверить осцилографом. Так при работе шагового двигателя спидометра ( и др) они есть. С этим явлением Вы можете ознакомиться в школьном учебнике физики, называется оно самоиндукция. Всё это другая тема, человек спросил о светодиодах, а это совсем другое.
Желаю успехов!
Перечитайте внимательно мой предыдущий постинг, очень внимательно!
После чего, вероятно, все выше сказанное Вами можно будет удалить.

И Вам того-же желаю!

[quote=»KOLHOZNIK»][quote]а схема с отдельным подключением резистора к нужно подключать ни к каждому диоду, а к группе из трёх последовательно соединённых диодов.

Подобную задачу решал недавно. В приемнике подсветка шкалы на МН6,3в заменялась на яркие зеленые диоды.
Питание было +15в. 4 штуки.
После всех экспериментов и одного сгоревшего диода пришлось подбирать токоограничивающие сопротивления на каждый диод. Чтобы выровнять яркость свечения. Заметил, что диоды работают в импульсном режиме. Заметно, когда смотришь боковым зрением. Есть мерцание. Что интересно, для одинаковой яркости токи у каждого экземпляра диода получились разные.
Другое неудобство — узкий направленный луч света. Пришлось дополнять отражателями а диоды направлять в противоположную сторо ну от шкалы.
И если бы не красивый зеленый цвет и экономия накального тока — вернулся бы на старые добрые накальные 6 вольтовые лампочки.

Подобную задачу решал недавно. В приемнике подсветка шкалы на МН6,3в заменялась на яркие зеленые диоды.
Питание было +15в. 4 штуки.
Надо было купить светодиоды прямого включения на 12 вольт.

Другое неудобство — узкий направленный луч света.
Чтобы этого эффекта избежать — достаточно было обточить светодиод «нулёвкой».

В соответствии со здравым смыслом и законом Ома методика предложенная мной должна работать. Многочисленные посты о сгоревших диодиках побудили меня взять 3 диода от раздолбанного фонарика, свежезаряженный аккумулятор 17 А/ч и несколько резисторов.
Соединив все последовательно ( диоды в одинаковой полярности ) следующие результаты имеем ( а не они нас 😀 ) :
при сопротивлении 500 Ом ток 8.7 мА напряжение на группе диодов 8.85 В.
при сопротивлении 168 Ом ( 3 по 500 ) ток 23 мА, напряжение 9.23 В
потерь нет из чего делаем вывод, что неудавшиеся эксперименты вызваны какой либо ошибкой , например маленьким токоограничивающим сопротивлением.

Светодиоды на 12 вольт

Подмена ламп накаливания на светодиоды в автомобиле очень пользующееся популярностью и верное решение. В большинстве случаев светодиоды употребляются в авто для подсветки фар, контрольных ламп, стоп сигналов, задних габаритов и снутри салона. Но всё огромную популярность получают светодиоды в главных лампах близкого и далекого света, также противотуманок. Вместе с бессчетными известными преимуществами, в особенности веселит в светодиодах возможность подключать их на 12 вольт аккума авто.

Есть разные варианты включения светодиодов от 12 вольт. Для питания 1-го белоснежного светодиода нужно 3.5 — 3.7 В. Но светодиод, как и хоть какой полупроводник, имеет технологический разброс значения прямого напряжения. Потому не стоит строго придерживаться данных значений напряжения падения — можно повстречать белоснежный светодиод с прямым напряжением от 3-х вольт до 3,8. Потому лучше сделать расчёт по максимуму. При подключении допустим 4-х светодиодов поочередно, получаем напряжение 3.7х4=14.8 В, а ведь напряжение питания авто 12 вольт и светодиодов могут вообщем не работать. Даже если их питать без резистора ограничителя тока. При подключении 3-х массивных светодиодов на ток 0,35А рассчитываем номинал токоограничительного резитора по формуле (Uпит-Uпадled)/Iобщ, тогда (12В-3.7х3)/0.35=2.57 Ом, избираем ближний номинал резистора из стандартного ряда с припасом — 2.7 Ом. Мощность резистора расчитываем по формуле Pрез=IобщхUпад, тогда 0.35х0.9=0.315. Берём резистор мощностью 0.5Вт.

Аналогично проводим рассчёт количества светодиодов в группе при напряжении 24 В и любом другом. Более всераспространенные напряжения питания светодиодов:

для белоснежных, голубых, зеленоватых, ультрафиолетовых – 3,5 В

для бардовых – 2-2,5 В

для инфракрасных – 1,2-1,9 В

Фактически можно использовать несколько поочередно соединеных светодиодов с одним ограничивающим резистором при питании от 12 вольт, а можно каждый светодиод включать со своим резистором. Потому давайте разглядим два примера. Собственный резистор для каждого светодиода, и общий резистор на поочередную цепочку из 3-х светодиодов. Напряжение бортовой сети авто при заведенном движке 14,9 В, при выключенном — около 12,6 В. Светодиоды голубые, прямое напряжение 3,3 В, номинальный ток 20мА (0,02А).

1. Отдельный резистор. R=(14,9-3,3)/0,02=580 Ом, принимаем 560 Ом. Наибольший ток Imax=(14,9-3,3)/560=20,7 мА, малый ток Imin=(12,6-3,3)/560=16,6 мА. Мощность резистора P=(14,9-3,3)х0,0207=0,24 Вт, принимаем 0,25 Вт.

2. Общий резистор. R=(14,9-3х3,3)/0,02=250 Ом, принимаем 240 Ом. Наибольший ток в цепи Imax=(14,9-3х3,3)/240=20,8 мА, малый ток Imin=(12,6-3х3,3)/240=11,3 мА. Мощность резистора P=(14,9-3х3,3)х0,0208=0,11 Вт, принимаем 0,125 Вт.

Изменение тока в цепи, а соответственно яркость светодиода, для режимов движок включен/выключен составляет:

1. Изменение в 20,7/16,6=1,257 раза либо 25%, что будет практически неприметно,

2. Изменение в 20,8/11,3=1,841 раза либо 45%, что естественно видно.

Округление номинала резистора в огромную либо наименьшую сторону не значительно. При питании светодиода, за счет округления номинала резистора, фактический ток по сопоставлению с расчетным поменяется всего на несколько процентов, что не принципно. Изменение прямого напряжения выразится в нескольких миливольтах. В любом случае помните: никогда не подключайте светодиоды к источнику напряжения без ограничительного резистора.

Расчет резистора для светодиода. Онлайн калькулятор

Расчет резистора для светодиода

Чтобы компенсировать сопротивление светодиода, нужно прежде всего подобрать резистор с более высоким сопротивлением. Такой расчет не составит труда для тех, кто знает, что такое закон Ома.

Математический расчет

Исходя из закона Ома, рассчитываем по такой формуле:

где Un – напряжение сети; Uvd – напряжение, на которое рассчитана работа светодиода; Ivd – ток.

Допустим, у нас светодиод с характеристиками:

2,1 -3, 4 вольт – рабочее напряжение (Uvd). Возьмем среднее значение 2, 8 вольт.

20 ампер – рабочий ток (Ivd)

220 вольт – напряжение сети (Un)

В таком случае мы получаем величину сопротивления R = 10, 86. Однако этих расчетов недостаточно. Резистор может перегреваться. Для предотвращения перегрева нужно учитывать при выборе его мощность, которая рассчитывается по следующей формуле:

Обратите внимание, что резистор подведен на плюсовой контакт диода. Определить полярность диода достаточно просто: плюсовой контакт в колбе по размеру больше минусового.

Для наглядности рекомендуем посмотреть видео:

Графический расчет

Графический способ – менее популярный для расчета резистора на светодиод, но может быть даже более удобный. Зная напряжение и ток диода (их называют еще вольтамперными характеристиками – ВАХ), вы можете узнать сопротивление нужного резистора по графику, представленному ниже:

Тут изображен расчет для диода с номинальным током 20мА и напряжением источника питания 5 вольт. Проводя пунктирную линию от 20 мА до пересечения с «кривой led» (синий цвет), чертим пересекающую линию от прямой Uled до прямой и получаем максимальное значение тока около 50 мА. Далее рассчитываем сопротивление по формуле:

Получаем значение 100 Ом для резистора. Находим для него мощность рассеивания (Силу тока берем из Imax):

Как подобрать резистор для одиночного светодиода

Для ограничения тока светоизлучающего диода можно использовать резистор, включенный таким образом:

Теперь определяем, какой резистор нужен. Для расчета сопротивления используется формула:

где U пит — напряжение питания,

U пад- падение напряжения на светодиоде,

I — требуемый ток светодиода.

При этом мощность, рассеиваемая на резисторе, будет пропорциональна квадрату тока:

Например, для красного светодиода Cree C503B-RAS типовое падение напряжения составляет 2.1 В при токе 20 мА. При напряжении питания 12 В сопротивление резистора будет составлять

Из стандартного ряда сопротивлений Е24 подбираем наиболее близкое значение номинала – 510 Ом. Тогда мощность, рассеиваемая на резисторе, составит

Таким образом, потребуется гасящий резистор номиналом 510 Ом и мощностью рассеивания 0.25 Вт.

Может сложиться впечатление, что при низких напряжениях питания можно подключать led без резистора. На этом видео наглядно показано, что произойдет со светоизлучающим диодом, включенного таким образом, при напряжении всего 5 В:

Светодиод сначала будет работать, но через несколько минут просто перегорит. Это вызвано нелинейным характером его ВАХ, о чем говорилось в начале статьи.

Никогда не подключайте светодиод без гасящего резистора даже при низком напряжении питания. Это ведет к его выгоранию и, в лучшем случае, к обрыву цепи, а в худшем – к короткому замыканию.

Онлайн-калькулятор расчета сопротивления

Задача усложняется, если вы хотите подключить не один, а несколько диодов.

Для облегчения самостоятельных расчетов мы подготовили онлайн-калькулятор расчета сопротивления резисторов. Если подключать несколько светодиодов, то нужно будет выбрать между параллельным и последовательным соединениями между ними. И для этих схем нужны дополнительные расчеты для источника питания. Можно их легко найти в интернете, но мы советуем воспользоваться нашим калькулятором.

Вам понадобится знать:

  1. Напряжение источника питания.
  2. Характеристику напряжения диода.
  3. Характеристику тока диода.
  4. Количество диодов.

А также нужно выбрать параллельную или последовательную схему подключения. Рекомендуем ознакомиться с разницей между соединениями в главах, которые мы подготовили ниже.

Светодиоды. Виды, типы светодиодов. Подключение и расчёты..

Вот так светодиод выглядит в жизни : А так обозначается на схеме :
Для чего служит светодиод? Светодиоды излучают свет, когда через них проходит электрический ток.

Были изобретены в 70-е года прошлого века для смены электрических лампочек, которые часто перегорали и потребляли много энергии.

Подключение и пайка Светодиоды должны быть подключены правильным образом, учитывая их полярность + для анода и к для катода Катод имеет короткий вывод, более короткую ножку. Если вы видите внутри светодиода его внутренности — катод имеет электрод большего размера (но это не официальные метод).

Светодиоды могут быть испорчены в результате воздействия тепла при пайке, но риск невелик, если вы паяете быстро. Никаких специальных мер предосторожности применять не надо для пайки большинства светодиодов, однако бывает полезно ухватиться за ножку светодиода пинцетом – для теплоотвода.

Проверка светодиодов Никогда не подключайте светодиодов непосредственно батарее или источнику питания! Светодиод перегорит практически моментально, поскольку слишком большой ток сожжет его. Светодиоды должны иметь ограничительный резистор.Для быстрого тестирования 1кОм резистор подходит большинству светодиодов если напряжение 12V или менее. Не забывайте подключать светодиоды правильно, соблюдая полярность!

Цвета светодиодов Светодиоды бывают почти всех цветов: красный, оранжевый, желтый, желтый, зеленый, синий и белый. Синего и белого светодиода немного дороже, чем другие цвета. Цвет светодиодов определяется типом полупроводникового материала, из которого он сделан, а не цветом пластика его корпуса. Светодиоды любых цветов бывают в бесцветном корпусе, в таком случае цвет можно узнать только включив его…

Многоцветные светодиоды Устроен многоцветный светодиод просто, как правило это красный и зеленый объединенные в один корпус с тремя ножками. Путём изменения яркости или количества импульсов на каждом из кристаллов можно добиваться разных цветов свечения.

Расчет светодиодного резистора Светодиод должен иметь резистор последовательно соединенный в его цепи, для ограничения тока, проходящего через светодиод, иначе он сгорит практически мгновенно… Резистор R определяется по формуле : R = (V S — V L) / I

V S = напряжение питания V L= прямое напряжение, расчётное для каждого типа диодов (как правилоот 2 до 4волт) I = ток светодиода (например 20мA), это должно быть меньше максимально допустимого для Вашего диода Если размер сопротивления не получается подобрать точно, тогда возьмите резистор большего номинала. На самом деле вы вряд-ли заметите разницу… совсем яркость свечения уменьшится совсем незначительно. Например: Если напряжение питания V S = 9 В, и есть красный светодиод (V = 2V), требующие I = 20мA = 0.020A, R = (- 9 В) / 0.02A = 350 Ом. При этом можно выбрать 390 Ом (ближайшее стандартное значение, которые больше).

Вычисление светодиодного резистора с использованием Закон Ома Закон Ома гласит, что сопротивление резистора R = V / I, где : V = напряжение через резистор (V = S — V L в данном случае) I = ток через резистор Итак R = (V S — V L) / I

Последовательное подключение светодиодов. Если вы хотите подключить несколько светодиодов сразу – это можно сделать последовательно. Это сокращает потребление энергии и позволяет подключать большое количество диодов одновременно, например в качестве какой-то гирлянды. Все светодиоды, которые соединены последовательно, долдны быть одного типа. Блок питания должен иметь достаточную мощность и обеспечить соответствующее напряжение.

Пример расчета : Красный, желтый и зеленый диоды — при последовательном соединении необходимо напряжение питания — не менее 8V, так 9-вольтовая батарея будет практически идеальным источником. V L = 2V + 2V + 2V = 6V (три диода, их напряжения суммируются). Если напряжение питания V S 9 В и ток диода = 0.015A, Резистором R = (V S — V L) / I = (9 — 6) /0,015 = 200 Ом Берём резистор 220 Ом (ближайшего стандартного значения, которое больше).

Избегайте подключения светодиодов в параллели! Подключение несколько светодиодов в параллели с помощью одного резистора не очень хорошая идея…

Как правило, светодиоды имеют разброс параметров, требуют несколько различные напряжения каждый. что делает такое подключение практически нерабочим. Один из диодов будет светиться ярче и брать на себя тока больше, пока не выйдет из строя. Такое подключение многократно ускоряет естественную деградацию кристалла светодиода. Если светодиоды соединяются параллельно, каждый из них должен иметь свой собственный ограничительный резистор.

Мигающие светодиоды Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек.

Цифробуквенные светодиодные индикаторы Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны

Параллельное соединение

Для тех, кто уже сталкивался на практике со схемами подключения светодиодного освещения, вопрос о выборе между параллельным и последовательным соединением обычно не стоит. Чаще всего выбирают схему последовательного соединения. У параллельного соединения для светодиодов есть один важный недостаток – это удорожание и усложнение конструкции, потому что для каждого диода нужен отдельный резистор. Но такая схема имеет и большой плюс – если сгорела одна линия, то перестанет светить только один диод, остальные продолжат работу.

Мигающие светодиоды


Мигающие светодиоды выглядят как обычные светодиоды, они могут мигать самостоятельно потому, что содержат встроенную интегральную схему. Светодиод мигает на низких частотах, как правило 2-3 вспышки в секунду. Такие безделушки делают для автомобильных сигнализаций, разнообразных индикаторов или детских игрушек. Светодиодные цифробуквенные индикаторы сейчас применяются очень редко, они сложнее и дороже жидкокристаллических. Раньше, это было практически единственным и самым продвинутым средством индикации, их ставили даже на сотовые телефоны.

Будет интересно➡ Что такое делитель напряжения и как он используется на резисторах?

При последовательном соединении надо учитывать падение напряжения на каждом диоде, эту сумму сложить и из напряжения питания вычесть вышеозначенную сумму и уже для неё посчитать ток, еа который рассчитан один светодиод. При параллельном несколько сложнее, когда ставишь в параллель второй диод, резистор, необходимый для одного, делишь пополам, а когда три – тогда номинал резистора для двух диодов надо умножить на 0.7, когда четыре диода – номинал для трёх умножаешь на 0.69, для пяти – номинал для четырёх умножаешь на 0.68 и т.д.

При последовательном соединении мощность резистора как для одного диода, независимо от количества, а при параллельном, при каждом добавлении диода, мощность надо пропорционально увеличивать. Только в параллельном и последовательном соединении должны быть диоды одного типа. Но я всегда ставлю на каждый диод свой резистор, потому как диоды имеют довольно большой разброс параметров. И, как показывает практика, обязательно находится слабое звено.

Материал в тему: как устроен тороидальный трансформатор и в чем его преимущества.

Можно ли обойтись без резисторов

В бюджетных или просто старых приборах используются резисторы. Также они используются для подключения всего только нескольких светодиодов.

Но есть более современный способ – это понижение тока через светодиодный драйвер. Так, в светильниках в 90% встречаются именно драйверы. Это специальные блоки, которые через схему преобразуют характеристики тока и напряжения питающей сети. Главное их достоинство – они обеспечивают стабильную силу тока при изменении/колебании входного напряжения.

Подбор токоограничивающего резистора для светодиода

Светодиод – это полупроводниковый элемент электрической схемы. Его особенностью является нелинейная вольт-амперная характеристика. Стабильность и срок службы прибора во многом обусловлены силой тока. Малейшие перегрузки приведут к ухудшению качества светодиода (деградации) или его поломке.

Зачем резистор перед светодиодом.

В идеале для работы диоды следует подключать к источнику постоянного тока. В этом случае элемент будет работать стабильно. Но на практике для подключения чаще всего используют более распространенные блоки питания с постоянным напряжением. При этом для ограничения силы тока, которая протекает через LED элемент, нужно включать в электрическую цепь дополнительное сопротивление − резистор. В статье рассмотрены методы расчета резистора для светодиода.

Когда следует подключать светодиод через резистор

Существует несколько случаев, когда такая электрическая схема уместна. Во-первых, токоограничивающий резистор стоит использовать, если эффективность схемы не первоочередная задача. В качестве примера можно привести применение светодиода в качестве индикатора в приборах. В таком случае важно самом свечение, а не его яркость.

Во-вторых, применение резистора оправдано в случаях, когда необходимо выяснить полярность и работоспособность LED элемента. Одним из методов является подключение прибора к блоку питания. В этом качестве часто используют аккумуляторы от мобильных телефонов или батарейки. Напряжение на них может достигать 12 В. Это очень высокая величина, и прямое подключение светодиода приведет к поломке. Для ограничения напряжения в цепь вставляют резистор.

В-третьих, резистор используют в исследовательских целях для изучения работы новых образцов светодиодов.

В других случаях можно воспользоваться драйвером – прибором, стабилизирующим ток.

Математический расчет.

Для подбора сопротивления придется вспомнить школьный курс физики.

На рисунке представлена простая последовательная электрическая схема соединения резистора и диода. На схеме применены следующие обозначения:

  • U – входное напряжение блока питания;
  • R – резистор с падением напряжения UR;
  • LED – светодиод с падением напряжения ULED (паспортное значение) и дифференциальным сопротивлением RLED;

Поскольку элементы соединены последовательно, то сила тока I в них одинакова.

По второму закону Кирхгофа:

Одновременно используем закон Ома:

Подставим формулу (2) в формулу (1) и получим:

Путем простых математических преобразований из формул (1) и (3) найдем искомое сопротивление резистора R:

Для более точного подбора можно рассчитать мощность рассеивания резистора Р.

Примем напряжение блока питания U = 10 В.

Характеристики диода: ULED = 2В, I = 40 мА = 0,04A.

Подставим нужные цифры в формулу (4), получим: R = (10 — 2) / 0,04 = 200 (Ом).

Мощность рассеивания (5): составит Р = (10 – 2) * 0,04 = 0,32 (Вт).

Графический расчет.

При наличии вольт-амперной характеристики несложно определить сопротивление резистора графическим способом. Метод применяется редко, но полезно про него знать.

Для определения искомого сопротивления нужно знать ток нагрузки ILED и напряжение блока питания U. Далее следует перпендикуляр, соответствующий значению тока, до пересечения с вольт-амперной кривой. Затем через точку на графике и значению U провести прямую, которая покажет на оси тока максимальное его значение IMAX. Эти цифры подставляем в закон Ома (2) и вычисляем сопротивление резистора.

Например, ILED = 10 мА, а U = 5 В. По графику IMAX примерно равна 25 мА.

По закону Ома (2) R = U / IMAX = 5 / 0,025 = 200 (Ом).

Примеры вычислений сопротивления для светодиода.

Разберем некоторые наглядные случаи вычисления сопротивления элемента в конкретных схемах.

Вычисление токоограничивающего сопротивления при последовательном соединении нескольких светодиодов.

Из курса физики известно, что в такой схеме значение тока постоянное, а напряжение на LED элементах суммируется.

Возьмем напряжение источника питания U = 12 В.

Характеристики диодов одинаковы: ULED = 2В, ILED = 10 мА.

Преобразуем формулу (4), учитывая три LED элемента.

R = (12 – 3* 2) / 0,01 = 600 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2 * 3) * 0,01 = 0,6 (Вт).

Вычисление сопротивления при параллельном соединении светодиодов.

В этом случае постоянным сохраняется напряжение, а силы тока складываются. Поэтому при тех же входных данных (напряжение источника питания U = 12 В, напряжение и ток на диодах ULED = 2В, ILED = 10 мА), расчет будет несколько другим.

Используем формулу (4), учитывая три LED элемента.

R = (12 – 2) / 3*0,01 = 333,3 (Ом).

Мощность рассеивания (5) составит: Р = (12 – 2) * 3*0,01 = 0,3 (Вт).

Однако данное подключение не стоит применять на практике. Даже светодиоды из одной партии не гарантируют одинакового падения напряжений. Из-за этого ток на отдельном LED элементе может превысить допустимый, что может спровоцировать выход элементов из строя.

Для параллельного соединения светодиодов необходимо к каждому из них подключать свой резистор.

Вычисление сопротивления при параллельно-последовательном соединении LED элементов.

Для подключения большого количества светодиодов уместно использовать параллельно-последовательную электрическую схему. Поскольку в параллельных ветках напряжение одинаковое, то достаточно узнать сопротивление резистора в одной цепи. А количество веток не имеет значения.

Напряжение блока питания U = 12 В.

Характеристики диодов одинаковы: ULED = 2В, ILED = 10 мА.

Максимальное количество LED элементов n для одной ветки рассчитывается так:

В нашем случае n = (12 — 2) / 2 = 5 (шт).

Сопротивление резистора для одной ветки:

Для трех светодиодов оно составит: R = (12 – 3*2)/ 0,01 = 600 (Ом).

Правильный расчет резистора для светодиода, подбор резистора по цветовой маркировке + онлайн калькулятор

Светоизлучающие диоды, характеризуются рядом эксплуатационных параметров:

  • Номинальный (рабочий) ток – Iн;
  • падение напряжения при номинальном токе – Uн;
  • максимальная рассеиваемая мощность – Pmax;
  • максимально допустимое обратное напряжение – Uобр.

Самым важным из перечисленных параметров является рабочий ток.

При протекании через светодиод номинального рабочего тока – номинальный световой поток, рабочее напряжение и номинальная рассеиваемая мощность устанавливаются автоматически. Для того чтобы задать рабочий режим LED, достаточно задать номинальный ток светодиода.

В теории светодиоды нужно подключать к источникам постоянного тока. Однако, на практике, LED подключают к источникам постоянного напряжения: батарейки, трансформаторы с выпрямителями или электронные преобразователи напряжения (драйверы).

Для задания рабочего режима светодиода, применяют простейшее решение – последовательно с LED включают токоограничивающий резистор. Их еще называют гасящими или балластными сопротивлениями.

Рассмотрим, как выполняется расчет сопротивления резистора для светодиода.

Расчет резистора светодиода (по формулам)

При расчете вычисляют две величины:

  • Сопротивление (номинал) резистора;
  • рассеиваемую им мощность P.

Источники напряжения, питающие LED, имеют разное выходное напряжение. Для того чтобы выполнить подбор резистора для светодиода нужно знать напряжение источника (Uист), рабочее падение напряжения на диоде и его номинальный ток. Формула для расчета выглядит следующим образом:

При вычитании из напряжения источника номинальное падение напряжения на светодиоде – мы получаем падение напряжения на резисторе. Разделив получившееся значение на ток мы, по закону Ома, получаем номинал токоограничивающего резистора. Подставляем напряжение, выраженное в вольтах, ток – в амперах и получаем номинал, выраженный в омах.

Электрическую мощность, рассеиваемую на гасящем сопротивлении, вычисляют по следующей формуле:

P = (Iн) 2 ⋅ R

Исходя из полученного значения, выбирается мощность балластного резистора. Для надежной работы устройства она должна быть выше расчетного значения. Разберем пример расчета.

Пример расчета резистора для светодиода 12 В

Рассчитаем сопротивление для LED, питающегося от источника постоянного напряжения 12В.

Допустим в нашем распоряжении имеется популярный сверхяркий SMD 2835 (2.8мм x 3.5мм) с рабочим током 150мА и падением напряжения 3,2В. SMD 2835 имеет электрическую мощность 0,5 ватта. Подставим исходные значения в формулу.

R = (12 — 3,2) / 0,15 ≈ 60

Получаем, что подойдет гасящий резистор сопротивлением 60 Ом. Ближайшее значение из стандартного ряда Е24 – 62 ома. Таким образом, для выбранного нами светодиода можно применить балласт сопротивлением 62Ом.

Теперь вычислим рассеиваемую мощность на сопротивлении.

P = (0,15) 2 ⋅ 62 ≈ 1,4

На выбранном нами сопротивлении будет рассеиваться почти полтора ватта электрической мощности. Значит, для наших целей можно применить резистор с максимально допустимой рассеиваемой мощностью 2Вт.

Осталось купить резистор с подходящим номиналом. Если же у вас есть старые платы, с которх можно выпаять детали, то по цветовой маркировке можно выполнить подбор резистора. Воспользуйтесь формой ниже.

На заметку! В приведенном выше примере на токоограничительном сопротивлении рассеивается почти в три раза больше энергии, чем на светодиоде. Это означает, что с учетом световой отдачи LED, КПД нашей конструкции меньше 25%.

Чтобы снизить потери энергии лучше применить источник с более низким напряжением. Например, для питания можно применить преобразователь постоянного напряжения AC/AC 12/5 вольт. Даже с учетом КПД преобразователя потери будут значительно меньше.

Параллельное соединение

Довольно часто требуется подключить несколько диодов к одному источнику. Теоретически, для питания нескольких параллельно соединенных LED, можно применить один токоограничивающий резистор. При этом формулы будут иметь следующий вид:

P = (n ⋅ Iн) 2 ⋅ R

Где n – количество параллельно включенных ЛЕДов.

Почему нельзя использовать один резистор для нескольких параллельных диодов

Даже в «китайских» изделиях производители для каждого светодиода устанавливают отдельный токоограничивающий резистор. Дело в том, что в случае общего балласта для нескольких LED многократно возрастает вероятность выхода из строя светоизлучающих диодов.

В случае обрыва одного из полупроводников, его ток перераспределится через оставшиеся LED. Рассеиваемая на них мощность увеличится и они начнут интенсивно нагреваться. Вследствие перегрева следующий диод выйдет из строя и дальше процесс примет лавинообразный характер.

Совет. Если по какой-то причине нужно обойтись одним гасящим сопротивлением, увеличьте его номинал на 20-25%. Это обеспечит большую надежность конструкции.

Можно ли обойтись без резисторов?

Действительно, в некоторых случаях можно не использовать токоограничивающий резистор. Рассмотренный нами светодиод можно напрямую запитать от двух батареек 1,5В. Так как его рабочее напряжение составляет 3,2В, то протекающий через него ток будет меньше номинального и балласт ему не потребуется. Конечно, при таком питании светодиод не будет выдавать полный световой поток.

Иногда в цепях переменного тока в качестве токоограничивающих элементов вместо резисторов применяют конденсаторы (подробнее про расчет конденсатора). В качестве примера можно привести выключатели с подсветкой, в которых конденсаторы являются «безваттными» сопротивлениями.

Тема: Питание для светодиода 2.5. 3 v

Обратные ссылки
  • URL обратной ссылки
  • Подробнее про обратные ссылки
  • Закладки & Поделиться
  • Отправить тему форума в Digg!
  • Добавить тему форума в del.icio.us
  • Разместить в Technorati
  • Разместить в ВКонтакте
  • разместить в Facebook
  • Разместить в MySpace
  • Разместить в Twitter
  • Разместить в ЖЖ
  • Разместить в Google
  • Разместить в Yahoo
  • Разместить в Яндекс.Закладках
  • Разместить в Ссылки@Mail.Ru
  • Reddit!
  • Опции темы
    • Версия для печати
  • Питание для светодиода 2.5. 3 v

    Здравствуйте, уважаемые!
    Есть необходимость разместить на свободном месте (размером 20х15мм)
    существующей платы, нечто, что позволит питать мигающий светодиод 2,5-3V, от напряжения 24V DC 2100mA. Как истый чайник, сейчас использую начинку блока питания вх.220V — вых.12V 100mA, на основе трансформатора с дополнительным резистором на 2кОм. Однако этот блок питания громоздкий и требует дополнительный корпус, что невозможно в условиях ограниченного пространства ниши материнского устройства. Навесной монтаж грозит коротким замыканием. Пожалуйста, помогите определиться с необходимыми деталями для монтажа на плате.

    • Поделиться
      • Поделиться этим сообщением через
      • Digg
      • Del.icio.us
      • Technorati
      • Разместить в ВКонтакте
      • Разместить в Facebook
      • Разместить в MySpace
      • Разместить в Twitter
      • Разместить в ЖЖ
      • Разместить в Google
      • Разместить в Yahoo
      • Разместить в Яндекс.Закладках
      • Разместить в Ссылки@Mail.Ru
      • Reddit!

    На сколько я понял, у Вас есть 24 вольта постоянного напряжения. сейчас диод питается постоянным напряжением 12 вольт через резистор 2 ком.
    Для питания от 24 вольт нужно увеличить резистор в 2 раза, то есть 4 ком. (такого номинала не бывает, можно взять 3,9ком, или 3,6 или 4.3 ком — это почти ни какой разницы!). Да и с тем же резистором 2 ком светодиод не сгорит, просто будет гореть ярче! :-)).
    Успехов! (Только полярность не перепутайте!).

    • Поделиться
      • Поделиться этим сообщением через
      • Digg
      • Del.icio.us
      • Technorati
      • Разместить в ВКонтакте
      • Разместить в Facebook
      • Разместить в MySpace
      • Разместить в Twitter
      • Разместить в ЖЖ
      • Разместить в Google
      • Разместить в Yahoo
      • Разместить в Яндекс.Закладках
      • Разместить в Ссылки@Mail.Ru
      • Reddit!

    Благодарю за ответ, Вадим! Только объясните, пожалуйста, а сила тока в 2100мА для диода не травматична? Или резистор в 4,3кОм как раз для этого? Если так, то почему с резистором на 2кОм светодиод останется цел? Простите дилетанта если что не так спрашиваю.

    Добавлено через 18 минут
    Следуя логике, если все так просто, как вы говорите, 4кОм можно получить последовательным соединением двух резисторов по 2кОм. Неужели не нужны всякие там регуляторы тока для светодиодов или регуляторы-стабилизаторы тока?

    Последний раз редактировалось Димитрий; 01.03.2011 в 22:39 . Причина: Добавлено сообщение

    • Поделиться
      • Поделиться этим сообщением через
      • Digg
      • Del.icio.us
      • Technorati
      • Разместить в ВКонтакте
      • Разместить в Facebook
      • Разместить в MySpace
      • Разместить в Twitter
      • Разместить в ЖЖ
      • Разместить в Google
      • Разместить в Yahoo
      • Разместить в Яндекс.Закладках
      • Разместить в Ссылки@Mail.Ru
      • Reddit!

    прежде всего — какой светодиод?
    самые его главные характеристики — напряжение и номинальный ток
    диаметр, длина, ножек, цвет — второстепенны.
    ток и наряжение как раз и задаются резистором.
    какой ток дают источник питания не важно лишь бы его ток не был меньше нужного тока для св. д.
    обычные светодиоды любого цвета имеют ток 20 миллиампер и напряжение порядка 3 вольт.
    из этог считаем резистор для 24 вольт
    падение напряжения на резисторе = 24-3=19
    его сопротивление тогда = 19/0,02= 950 ом

    для 12 вольт
    падение = 9
    R = 9/0,02= 450

    950 — это минимально допустимое сопротивление (при источнике 24 вольта) для обычного св диода.
    сопротивление может быть любым но не меньше 950 ом. хоть 100 килоом, только диод будет слабее светиться
    даже если вместо сопротивления взять в разные руки концы этой цепи св.д. будет слегка гореть.

    если сопротивление намного меньше — свд перегорит очень быстро

    можно ваще из розетки его тупо запитать
    тогда надо сопротивление от 20 килоом.
    только греться оно будет

    стабилизаторы и регуляторы — это для мощных диодов. там с ними тоже можно тупо резистор ставить только он нужен очень мощный ибо на нем много тепла будет. поэтому по теплу выгоднее импульсный стабилизатор тока делать и то если идет речь о питании от розетки или мощных диодов от 3 ватт.

    путать полярность не страшно — диоду это абсолютно фиолетово. он просто не будет светиться и ничего с ним не произойдет.

    Последний раз редактировалось RA3POD; 02.03.2011 в 00:14 .

    Электроника для всех

    Блог о электронике

    Основы на пальцах. Часть 2

    Применение резистора
    Применение конденсатора

    Он же емкость — еще один вид пассивных элементов. На схеме обозначен как две одинаковые параллельные черточки. В отличии от резистора, конденсатор это нелинейный элемент. По нашей канализационной аналогии его можно сравнить с резиновым баком. Вначале, когда он пуст, вода резко его заполняет, растягивая стенки. Постепенно, когда стенки растянутся до предела, его сопротивление возрастет настолько, что поток воды остановится. А если убрать внешнее давление, то хлынет обратно.
    Так же и электрический конденсатор, когда он не заряжен, то его сопротивление можно принять нулю, а вот когда зарядится, то бесконечностью, обрывом. Ток через него идет только лишь в момент заряда или разряда. После отсоединения источника тока конденсатор сам начинает действовать как источник, пока не разрядится.
    Конденсаторы в электронике в основном используют как фильтрующие элементы, удаляющие помехи. Здоровенные конденсаторы на силовых цепях в блоках питания служат для подпитки системы при пиковых нагрузках, сглаживая просадки напряжения. Основан этот эффект на том, что конденсатор не пропускает постоянный ток, вот переменная составляющая через него проходит на ура. Сопротивление конденсатора переменной составляющей тока зависит от частоты этой составляющей. Чем выше частота, тем меньше сопротивление конденсатора. В итоге, все высокочастотные помехи, идущие поверх постоянного напряжения, глушатся через конденсатор на землю, оставляя после себя чисто постоянное напряжение. Сопротивление конденсатора переменной составляющей также зависит и от емкости кондера, поэтому ставя конденсаторы с разной емкостью можно отсеять разные частоты.

    Конденсатор может служить времязадающим элементов в разного рода генераторах – от него будет зависеть частота генерации, либо в качестве формирователя импульса. Как, например,сброс в схемах на контроллере с инверсным Reset (мой любимый АТ89С51) . Основан сей прикол на том факте, что конденсатор пропускает постоянный ток только в период заряда, а значит если подключить инверсный reset через конденсатор на плюс, а через резистор на землю, то в начальный момент, пока конденсатор не заряжен на reset будет подан плюс питания, т.к. незаряженный конденсатор это почти короткое замыкание, а потом, когда конденсатор зарядится и превратится в обрыв, ножка reset окажется через резистор на земле. Таким образом во время пуска на ножке reset будет кратковременный импульс положительного напряжения, достаточный для первичного сброса процессора. Таким образом, например, сделано в схеме программатора для АТ89С51 с сайта atprog.boom.ru

    Пример использования индуктивности

    В народе катушка, грубо говоря, это кусок проволоки намотанный на каркас. В эту группу входят и дроссели и разного рода фильтры, а также некоторые антенны. Также индуктивностью обладает всё, что имеет обмотку, несмотря на то, что это не главное свойство, например двигатели или электромагниты. А значит это надо будет учитывать при проектировании цепей. Увязать индуктивность в нашу канализационную теорию было нелегко, но немного пораскинув мозгами мы таки придумали. В гидро модели катушка похожа на турбину с неслабой инерцией, где величина инерция является прообразом индуктивности. На стабильно текущий поток турбина, будучи раскрученной этим же потоком, не влияет никак, но стоит потоку ослабнуть, как турбина начнет за счет своей инерции подталкивать его. И наоборот, если турбина остановлена, то при появлении потока она будет его тормозить, пока не раскрутится. Чем больше инерция, тем сильней будет сопротивление изменению потоку.
    Так и катушка индуктивности препятствует изменению тока, протекающего через неё.
    Основное применение катушки в колебательных контурах генераторов и в фильтрах. Т.к. катушка имеет отличное свойство пропускать через себя постоянную составляющую и подавлять переменную. В паре с конденсатором они образуют отличный Г или П образный фильтр.

    Спасибо. Вы потрясающие! Всего за месяц мы собрали нужную сумму в 500000 на хоккейную коробку для детского дома Аистенок. Из которых 125000+ было от вас, читателей EasyElectronics. Были даже переводы на 25000+ и просто поток платежей на 251 рубль. Это невероятно круто. Сейчас идет заключение договора и подготовка к строительству!

    А я встрял на три года, как минимум, ежемесячной пахоты над статьями :)))))))))))) Спасибо вам за такой мощный пинок.

    171 thoughts on “Основы на пальцах. Часть 2”

    Тебе в школах преподавать надо… Даже мой дедушка не умел так понятно объяснять.

    Ссылка на основную публикацию
    Adblock
    detector