Прочность на разрыв единица измерения - Авто журнал Волгино Авто
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Предел прочности

Предел прочности

Предел прочности — это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин временное сопротивление, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».

Прочность — это сопротивление материала деформации и разрушению, одно из основных механических свойств. Другими словами, прочность — это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).

К характеристикам прочности при растяжении относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).

Предел прочности — это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2 ), а также указывается в мегапаскалях (МПа).

Различают:

  • предел прочности при растяжении,
  • предел прочности при сжатии,
  • предел прочности при изгибе,
  • предел прочности при кручении.

Предел кратковременной прочности (МПа) определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit — предел ограниченной длительной прочности на заданный срок службы. [1]

Прочность металлов

Физику прочности основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения P для данного материала зависит только от площади поперечного сечения F. Так появилась новая физическая величина — напряжение σ=P/F — и физическая постоянная материала: напряжение разрушения [4].

Физика разрушения как фундаментальная наука о прочности металлов возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.

Большое влияние на прочность материала оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.

К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе — модифицирование сплава.

Учебный фильм о прочности металлов (СССР, год выпуска:

Предел прочности металла

Предел прочности меди. При комнатной температуре предел прочности отожжённой технической меди σВ=23 кгс/мм 2 [8]. С ростом температуры испытания предел прочности меди уменьшается. Легирующие элементы и примеси различным образом влияют на предел прочности меди, как увеличивая, так и уменьшая его.

Предел прочности алюминия. Отожжённый алюминий технической чистоты при комнатной температуре имеет предел прочности σВ=8 кгс/мм 2 [8]. С повышением чистоты прочность алюминия уменьшается, а пластичность увеличивается. Например, литой в землю алюминий чистотой 99,996% имеет предел прочности 5 кгс/мм 2 . Предел прочности алюминия уменьшается естественным образом при повышении температуры испытания. При понижении температуры от +27 до -269°C временное сопротивление алюминия повышается — в 4 раза у технического алюминия и в 7 раз у высокочистого алюминия. Легирование повышает прочность алюминия.

Предел прочности сталей

В качестве примера представлены значения предела прочности некоторых сталей. Эти значения взяты из государственных стандартов и являются рекомендуемыми (требуемыми). Реальные значения предела прочности сталей, равно как и чугунов, а также других металлических сплавов зависят от множества факторов и должны определяться при необходимости в каждом конкретном случае.

Для стальных отливок, изготовленных из нелегированных конструкционных сталей, предусмотренных стандартом (стальное литьё, ГОСТ 977-88), предел прочности стали при растяжении составляет примерно 40-60 кг/мм 2 или 392-569 МПа (нормализация или нормализация с отпуском), категория прочности К20-К30. Для тех же сталей после закалки и отпуска регламентируемые категории прочности КТ30-КТ40, значения временного сопротивления уже не менее 491-736 МПа.

Для конструкционных углеродистых качественных сталей (ГОСТ 1050-88, прокат размером до 80 мм, после нормализации):

  • Предел прочности стали 10: сталь 10 имеет предел кратковременной прочности 330 МПа.
  • Предел прочности стали 20: сталь 20 имеет предел кратковременной прочности 410 МПа.
  • Предел прочности стали 45: сталь 45 имеет предел кратковременной прочности 600 МПа.

Категории прочности сталей

Категории прочности сталей (ГОСТ 977-88) условно обозначаются индексами «К» и «КТ», после индекса следует число, которое представляет собой значение требуемого предела текучести. Индекс «К» присваивается сталям в отожженном, нормализованном или отпущенном состоянии. Индекс «КТ» присваивается сталям после закалки и отпуска.

Предел прочности чугуна

Метод определения предела прочности чугуна регламентируется стандартом ГОСТ 27208-87 (Отливки из чугуна. Испытания на растяжение, определение временного сопротивления).

Предел прочности серого чугуна. Серый чугун (ГОСТ 1412-85) маркируется буквами СЧ, после букв следуют цифры, которые указывают минимальную величину предела прочности чугуна — временного сопротивления при растяжении (МПа*10 -1 ). ГОСТ 1412-85 распространяется на чугуны с пластинчатым графитом для отливок марок СЧ10-СЧ35; отсюда видно, минимальные значения предела прочности серого чугуна при растяжении в литом состоянии или после термической обработки варьируются от 10 до 35 кгс/мм 2 (или от 100 до 350 МПа). Превышение минимального значения предела прочности серого чугуна допускается не более, чем на 100 МПа, если иное не оговорено отдельно.

Предел прочности высокопрочного чугуна. Маркировка высокопрочного чугуна также включает в себя цифры, обозначающие временное сопротивление при растяжении чугуна (предел прочности), ГОСТ 7293-85. Предел прочности при растяжении высокопрочного чугуна составляет 35-100 кг/мм 2 (или от 350 до 1000 МПа).

Из вышеизложенного видно, что чугун с шаровидным графитом может успешно конкурировать со сталью.

Подготовлено: Корниенко А.Э. (ИЦМ)

Лит.:

  1. Циммерман Р., Гюнтер К. Металлургия и материаловедение. Справ. изд. Пер. с нем. – М.: Металлургия, 1982. – 480 с.
  2. Иванов В.Н. Словарь-справочник по литейному производству. – М.: Машиностроение, 1990. – 384 с.: ил. — ISBN 5-217-00241-1
  3. Жуковец И.И. Механические испытания металлов: Учеб. для сред. ПТУ. — 2-е изд., перераб. и доп. – М.: Высш.шк., 1986. — 199 с.: ил. — (Профтехобразование). — ББК 34.2/ Ж 86/ УДЖ 620.1
  4. Штремель М.А. Прочность сплавов. Часть II. Деформация: Учебник для вузов. — М.:*МИСИС*, 1997. — 527 с.
  5. Мешков Ю.Я. Физика разрушения стали и актуальные вопросы конструкционной прочности // Структура реальных металлов: Сб. науч. тр. — Киев: Наук. думка, 1988. — С.235-254.
  6. Френкель Я.И. Введение в теорию металлов. Издание четвёртое. — Л.: «Наука», Ленингр. отд., 1972. 424 с.
  7. Получение и свойства чугуна с шаровидным графитом. Под редакцией Гиршовича Н.Г. — М.,Л.: Ленинградское отделение Машгиза, 1962, — 351 с.
  8. Бобылев А.В. Механические и технологические свойства металлов. Справочник. — М.: Металлургия, 1980. 296 с.

Конкурс «Я и моя профессия: металловед, технолог литейного производства». Узнать, участвовать >>> —>

прочность на разрыв

Прочность на разрыв определяется как наименьшее напряжение растяжения (сила, деленная на единицу площади поперечного сечения), требуемое, чтобы разрушить образец. Иногда определяют также эффективную прочность материала: это наибольшая длина призматического образца (проволоки, волокна), закреплённого в верхней точке и способного не разорваться под собственным весом. Прочность на разрыв измеряется в паскалях, эффективная прочность — в метрах. Пересчёт эффективной прочности в прочность на разрыв осуществляется по формуле:

где ?UTS — прочность на разрыв, LUTS — эффективная прочность, ? — плотность материала, g — ускорение свободного падения.

Энциклопедический словарь нанотехнологий. — Роснано . 2010 .

  • протеомика
  • размерный эффект

Смотреть что такое «прочность на разрыв» в других словарях:

ПРОЧНОСТЬ НА РАЗРЫВ — (Tensile strength) см. Сопротивление на разрыв. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

ПРОЧНОСТЬ НА РАЗРЫВ — ПРОЧНОСТЬ НА РАЗРЫВ, сопротивление, которое материал оказывает на НАПРЯЖЕНИЕ растяжения. Оно определяется как наименьшее напряжение растяжения (сила, деленная на единицу площади поперечного разреза), требуемое, чтобы разрушить предмет … Научно-технический энциклопедический словарь

прочность на разрыв — Напряжение, при котором металл разрушается при гидростатическом давлении. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN disruptive strength … Справочник технического переводчика

прочность на разрыв — trūkstamasis stiprumas statusas T sritis fizika atitikmenys: angl. breaking strength; rupture strength vok. Bruchfestigkeit, f; Zerreißfestigkeit, f rus. прочность на разрыв, f; прочность при разрыве, f pranc. résistance à la rupture, f … Fizikos terminų žodynas

Прочность на разрыв — Disruptive strength Прочность на разрыв. Напряжение, при котором металл разрушается при гидростатическом давлении. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003… … Словарь металлургических терминов

прочность на разрыв — rus предел (м) прочности на растяжение или разрыв, прочность (ж) на разрыв; временное сопротивление (с) разрыву eng tensile strength fra résistance (f) à la traction deu Zugfestigkeit (f), Reißfestigkeit (f) spa resistencia (f) a la tracción … Безопасность и гигиена труда. Перевод на английский, французский, немецкий, испанский языки

Прочность на разрыв — Предел прочности механическое напряжение σ0, выше которого происходит разрушение материала. Поскольку при оценке прочности время нагружения образцов часто не превышает нескольких секунд от начала нагружения до момента разрушения, то его также… … Википедия

прочность на разрыв надрезанного образца — Отношение приложенной нагрузки к первоначальной области минимального поперечного сечения при испытаниях на разрыв проточенного образца. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN notch rupture strenght … Справочник технического переводчика

прочность на разрыв и разрушение — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN tensile strength and collapse resistance … Справочник технического переводчика

Прочность на разрыв надрезанного образца — Notch rupture strenght Прочность на разрыв надрезанного образца. Отношение приложенной нагрузки к первоначальной области минимального поперечного сечения при Stress rupture test of a notched specimen Испытаниях на разрыв проточенного образца.… … Словарь металлургических терминов

ru.knowledgr.com

Pas (символ: Pa) представляет собой переменную единицу давления SI, используемую для квантования внутреннего давления, напряжения, модуля Юнга и ультимативного предела прочности на разрыв. Единица, названная в честь Хиз Паси, определяется как один ньютон на квадратный метр и эквивалентна 10 барье (Ba) в системе CGS. Единица измерения, называемая стандартной атмосферой (atm), определяется как 101,325 Pa.

Общими множественными единицами паса являются гектопазо (1 hPa = 100 Pa), что равно одному бар, и килопазо (1 kPa = 1000 Pa), которое равно одному сантибару. Метеорологические наблюдения обычно сообщают об атмосферном давлении в гектопаскалях согласно рекомендации Всемирной метеорологической организации. В отчетах в Соединенных Штатах обычно используются чернила ртути или барс, в Канаде эти отчеты приводятся в килопаскалях.

Этимология

Подразделение названо в честь исе Пас , отмеченного за вклад в гидродинамику и гидростатику, и опытов с барометром. Название pas было принято для единицы СИ ньютон на квадратный метр (Н/м2) 14-й Генеральной конференцией по правам и мерам в 1971 году.

Определение

Pas может быть выражена с использованием SI ved единиц или поочередно solely SI базовых единиц, как:

где N — ньютон, m — метр, kg — к м, s — второй, а J — джоул.

Один пас — это давление, оказываемое силой магнитудой один ньютон перпендически на площадь в один квадратный метр.

Стандартные единицы

Единица измерения, называемая атмосферой или стандартной атмосферой (atm), составляет 101325 Па. Это значение часто используется в качестве эталонного давления и указывается как таковое в некоторых национальных и международных стандартах, таких как ISO 2787 Международной организации по стандартизации (pneumatic tools and compressors), ISO 2533 (aerospace) и ISO 5024 (petroleum). Напротив, Международный союз чистой и прикладной химии (ИЮПАК) рекомендует использовать 100 кПа в качестве стандартного давления при сообщении о свойствах веществ.

Unicode имеет выделенные кодовые точки и в блоке совместимости CJK, но они существуют только для обратной совместимости с некоторыми старыми идеографическими наборами символов и поэтому депрецированы.

Виды использования

Pas (Pa) или kilopas (kPa) в качестве единицы измерения давления широко используется во всем мире и в значительной степени заменил единицы измерения pounds на квадратный inch (psi), за исключением некоторых стран, которые все еще используют систему измерения imperial или обычную систему США, включая Соединенные Штаты.

Геофизики используют гигапазу (GPa) для измерения или расчета тектонических масс и давления внутри Земли.

Медицинская элястография неинвазивно измеряет жесткость ткани с помощью ultrasound или магнитно-резонансного изображения и часто отображает модуль Юнга или модуль сдвига ткани в килопаскалях.

В материаловедении и технике ПАС измеряет жесткость, прочность на растяжение и прочность на сжатие материалов. При проектировании megapas (МПа) является предварительной единицей для этих применений, поскольку pas представляет очень малое количество.

Pas также эквивалентен единице измерения плотности энергии SI, джоуле на кубический метр. Это относится не только к термодинамике прессованных газов, но и к плотности энергии электрических, магнитных и гравитационных полей.

В измерениях звукового давления или неплотности звука один ПАС равен 94 дБ уровня звукового давления (SPL). Квест-звук, который человек слышит, известный как порог слуха, равен 0 дБ SPL, или 20 мкПа.

В медицине артериальное давление измеряется в метрах ртутного столба (мм рт.ст.). Нормальное кровяное давление взрослого человека составляет менее 120 мм рт.ст.к BP (SBP) и менее 80 мм рт.ст. BP (DBP). Перевести мм рт.ст. в единицы СИ следующим образом: 1 мм рт.ст. = 0.13332 кПа. Таким образом, нормальное артериальное давление в единицах СИ составляет менее 16,0 кПа ПЗ и менее 10,7 кПа ПД.

Блоки Hectopas и bar

Единицами атмосферного давления, обычно используемыми в метеорологии, были планка, которая была близка к среднему давлению воздуха на Земле, и планка . С момента введения единиц СИ метеорологи обычно измеряют давление в единице гектопаскалей (hPa), равное 100 паскалям или 1 бар. Исключения включают Канаду, которая использует килопаскали (кПа). Во многих других областях науки префиксы, являющиеся силой 1000, являются пре, что гектопаза от использования.

Многие страны также используют bars. Практически во всех других областях вместо них используется килопасса (1000 паскалей).

Многовидовые и субмультипные

Десятичные мультипли и субплицы формируются с использованием стандартных единиц СИ.

Адгезия или прочность сцепления

Определение

Адгезия, или прочность сцепления, — возникновение связи между поверхностными слоями двух разнородных твёрдых или жидких тел (фаз), приведённых в соприкосновение.

Физический смысл: адгезия характеризуется силой, необходимой для разделения поверхностей, или удельной работой адгезионного отрыва. Единицы измерения адгезии кгс/см 2 или МПа.

Частный случай адгезии – когезия — взаимодействие соприкасающихся одинаковых тел, т.е. сцепление внутри однородного материала. В некоторых случаях адгезия может оказаться сильнее, чем когезия, в таких случаях при приложении разрывающего усилия происходит когезионный разрыв, то есть разрыв в объёме менее прочного из соприкасающихся материалов.

Причины возникновения и ослабления адгезии

Причинами возникновения адгезии служат:

  1. Силы межмолекулярного взаимодействия;
  2. Силы химической (ионной, металлической) связи;
  3. Взаимная диффузия, т.е взаимное проникновение молекул контактирующих тел, сопровождающееся размыванием границы раздела фаз и переходом адгезии в когезию.

Отрицательно на адгезию влияет усадка. Чем больше величина усадки растворной смеси, тем вероятнее появление в зоне контакта усадочных трещин, ослабляющих сцепление.

Прочность сцепления старой бетонной поверхности с новым бетоном примерно составляет 0,8-1,0 МПа.

Сухие строительные смеси на цементном вяжущем «КТ трон» обладают адгезией 1,8-2,0 МПа к бетонным (железобетонным), кирпичным и каменным поверхностях за счет взаимопроникновения ионов и образования химической связи между ними.

Измерение адгезии растворов (бетонов) с основанием

Определение прочности сцепления (адгезии) различных видов бетонов проводят по ГОСТам, а в иных случаях и стандартам производителей. Совокупность методов измерения силы отрыва или скалывания при адгезии называется адгезиометрией. Адгезия может быть измерена при помощи прямых (с нарушением адгезионного контакта), неразрушающих (с измерением ультразвуковых или электоромагнитных волн) и косвенных (характеризующих адгезию лишь в сопоставимых условиях) методов.

Прочность сцепления с основанием растворов сухих строительных смесей на цементном вяжущем регламентируется ГОСТ 31356-2007. Согласно этому ГОСТу для сертификационных и арбитражных испытаний прочность сцепления определяется по силе отрыва образца затвердевшего раствора от основания — бетонной плиты, изготовленная по установленному режиму твердения из бетона определенного состава. Поверхность плиты должна быть категории A3 по ГОСТ 13015, класс бетона не ниже В20 по ГОСТ 26633.

На бетонную плиту наносится смесь толщиной не более 10 мм с использованием трафарета из нержавеющей стали или без него.Твердение образцов происходит в камере по установленному режиму с общей продолжительностью течение 28 суток.

Через 27 суток к затвердевшим образцам эпоксидным или другим быстротвердеющим клеем высокой прочности приклеивают металлический штамп и продолжают хранение образцов при температуре 20°С и относительной влажности 65% в течение 24 ч.

Силу отрыва образцов от основания определяют через 24 ч на прессе или другом средстве измерения, прикладывая к штампу нагрузку со скоростью ее нарастания (250 ± 50) Н/с.

При испытании отмечают характер отрыва образцов от основания – рисунок 1. Возможные варианты отрыва:

  • АТ-1 – адгезионный отрыв по границе образец-основание. Значение, полученное при испытаниях, равно фактической прочности сцепленияю.
  • АТ-2 – когезионный отрыв по телу образца. Прочность сцепления больше значения, полученного при испытаниях.
  • АТ-3 – отрыв по телу основания. Прочность сцепления больше значения, полученного при испытаниях. На практике на большинстве бетонов при силе отрыва свыше 1,6МПа происходит когезионный отрыв по основанию.

Рис.1. Варианты отрыва образца от основания

1 — металлический штамп; 2 — клей;

3 — образец; 4 — бетонная плита (основание)

Испытываем на разрыв пластики от BF

Друзья, всем привет!

Мы знаем, что среди вас есть не только любители всевозможных практических аспектов 3D-печати, но и пытливые умы, которым интересна внутренняя кухня процесса с Большими Графиками и Кучей Данных. Если вы относитесь к этой категории читателей, то приглашаем в совместное путешествие в страну испытаний пластика на разрыв вместе с Bestfilament и нашим лучшим помощником в этой истории — испытательной машиной на разрыв Instron 3345.
Испытания проходили на базе международной лаборатории «Композиционные материалы и покрытия» Томского Политехнического университета.

А вот и сама испытательная машина.

Испытательная машина на разрыв Instron 3345

В забеге участвуют образцы из ABS, PETG, SBS (Watson), BFlex. Габариты каждого образца: 110x10x2 мм. Внутреннее заполнение деталей 70%.

Полимерные образцы после испытаний

Само по себе испытание образца проходит максимально незатейливо. Образец фиксируется с двух сторон таким образом, чтобы база для растяжения составляла 20 мм, ну а дальше, как говорят в комедийном сериале, «ключ повернул, напор пошел». Скорость испытания всех образцов 50 мм/мин.

Фото испытаний образца из материала Watson BF

Абсолютные величины результатов испытаний мало что скажут обычному пользователю, поэтому будем проводить исследование в сравнении образцов между собой. В качестве отправной точки для разговора выбираем ABS от BF.

Фото испытания образца из материала ABS BF

Максимальная нагрузка — максимальное значение нагрузки, которую требовалось приложить в ходе испытания для растяжения образца. Единица измерения: ньютоны.

Нагрузка при разрыве — значение величины нагрузки в момент разрыва образца. Единица измерения: ньютоны.

Максимальное удлинение при растяжении — разница между длиной образца в момент разрыва и длиной образца до испытаний. Напомним, что длина базы образца, подвергающегося испытанию составляет 20 мм. Единица измерения: милиметры.

Модуль Юнга — физическая величина, характеризующая свойства материала сопротивляться растяжению. Иначе говоря напряжение, которое необходимо приложить для удлинения образца на единицу длины. Единица измерения: Па.

Предел текучести — механическая характеристика материала, характеризующая напряжение, при котором деформации продолжают расти без увеличения нагрузки. По сути это нагрузка, при которой в образце происходят необратимые пластические деформации.

Максимальное напряжение при растяжении.

Ниже приведен протокол испытания образца из материала ABS BF.

Протокол испытаний образца, изготовленного из материала ABS BF

Протокол испытаний образца, изготовленного из материала ABS BF

На рисунке изображены графики зависимости напряжения при растяжении к удлинению. Первая точка графика характеризует предел текучести образца, вторая максимальную нагрузку а третья напряжение при разрыве.
Среднее удлинение образцов составило 2,49 мм, что составляет 12,45 %.
Испытания характеризуют ABS пластик как достаточно жесткий, прочный, слабо поддающий удлинению материал.

Далее испытания подверглись образцы, изготовленные из материала PETG BF. PETG характеризуется хорошей спекаемостью слоев и высокими прочностными характеристиками. Проверим так ли это, и насколько PETG прочнее (или нет), чем ABS.

Ниже приведено видео испытаний образца из PETG.

Ниже приведен протокол испытаний образцов, изготовленных из PETG BestFilament.

Протокол испытания образцов из материала PETG BF

Проведем сравнительный анализ ABS и PETG.
Максимальная нагрузка на разрыв составила 0.77 кН, что примерно на 20% выше, чем у АБС.
Однако, образцы из PETG удлиняются примерно на 20-30% больше, а предел текучести и нагрузка при разрыве соответственно ниже. Это характеризует PETG как более пластичный, чем АБС на разрыв материал. Собственно благодаря хорошей этой пластичности, PETG способен выдержать большие нагрузки на разрыв.

Внимательные читатели заметят аномальное значение для четвертого образца в графе «предел текучести» — наглядное отражением факта, что даже незначительный артефакт печати может ощутимо повлиять на физические свойства изделия.Далее на очереди – некогда сверхсекретный и полный тайн Watson от BF (SBS полимер).

Фото испытания образца из материала Watson (SBS)

Протокол испытания образцов из материала Watson (SBS)

Как видим, прочностные характеристики SBS существенно уступают образцам выше.
Максимальная нагрузка на разрыв более чем в 3 раза меньше, чем у образцов из ABS.
Необратимые изменения в образцах происходят при значении напряжения порядка 4.5 МПа, что почти в 5 раз ниже значений аналогичного параметра из ABS.
Но при этом удлинение образца составляет более 100%.
Данные параметры характеризуют SBS-полимер как гораздо более пластичный и гибкий материал, чем ABS и PETG. Прочностные характеристики (при нагрузке на разрыв) не идут ни в какое сравнение ни с ABS ни тем более с PETG.
Таким образом применять SBS следует в случаях, когда требуется некоторая гибкость конечных изделий. Но при наличии различной механической нагрузки на конечное изделие SBS не сможет заменить конструктивные пластики, такие как ABS или PETG.

Последними испытанию подверглись образцы из гибкого материала BFlex

Прокол испытания образцов из гибкого материала BFlex

Данный материал показывает удивительные способности к удлинению. Если предыдущие образцы мы удлинялина 20-30%, гибкий Watson на 100%, то удлинение Bflex составило около 1500%!
Модуль Юнга и предел текучести существенно ниже, чем у образцов выше. Материал хорошо тянется при относительно небольших нагрузках. Однако достаточно быстро наступают необратимые пластичные деформации.

Наши испытания не претендуют на абсолютную истину. Как было отмечено выше, даже небольшие артефакты печати серьезно влияют на результат измерения. Кроме того есть случайные ошибки измерения и т.д. Для получения достоверных численных измерений требуется проведения сотни испытаний однотипных образцов из одного материала и усреднение этих показаний.
Мы взяли по 5 образцов каждого материала. Считаем, что для качественного сравнения материалов между собой этого вполне достаточно.

В будущем мы планируем провести аналогичные испытания образцов одного материала, отпечатанные при различных режимах печати: разная температура, разное заполнение, разное расположение слоев. Таким образом можно будет выявить степень влияния режимов печати на прочность конечных изделий.Напоминаем, что если у вас есть какие-либо вопросы, то вы можете связаться с нами любым удобным образом.

Как определить прочность бетона?

Прочность бетона – одна из важнейших характеристик этого строительного материала. Бетон лучше всего сопротивляется усилиям на сжатие. Поэтому проектирование осуществляется таким образом, чтобы на конструкцию действовали в основном силы сжатия. Если конструкция будет испытывать усилия на растяжение и изгиб, то при расчете проекта учитывают прочность на растягивающие усилия и растяжение при изгибе.

Характеристики прочности бетона

Порочность бетона на сжатие характеризуют марка или класс прочности, которые определяются в стандартном варианте в возрасте 28 суток. В зависимости от эксплуатационных особенностей строительной конструкции, момент определения прочности материала на сжатие может устанавливаться индивидуально. Это могут быть 3,7, 60, 90, 180 суток.

В проекте на строительную конструкцию пользуются понятием класса прочности и только в особых случаях – марки.

Таблица зависимости между классами и марками бетонов

Технологические факторы, влияющие на прочность бетона

Прочность бетона зависит от ряда факторов, среди которых:

  • Активность цемента. Между прочностными характеристиками бетонного продукта и активностью вяжущего существует линейная зависимость. Чем выше активность, тем лучше прочностные показатели.
  • Количество вяжущего. Повышение содержания вяжущего положительно влияет на прочностные характеристики только до определенного процентного содержания. Выше – прочностные показатели растут незначительно, а другие технические параметры ухудшаются – растут усадка и ползучесть.
  • Водоцементное соотношение. Оптимальная величина определяется необходимой маркой удобоукладываемости. Обычно в смеси содержится 40-70% воды. Превышение оптимального количества жидкости инициирует образование пор, снижающих прочность конечного продукта.
  • Гранулометрический и минералогический состав заполнителей. На прочность бетонного продукта отрицательно влияют: неоптимальный состав мелкого и крупного заполнителей, наличие в них пылевидных и глинистых частиц.
  • Качество воды. Вода, используемая для затворения смеси, берется из водопровода питьевого назначения или проверяется в лаборатории на присутствие в ней примесей, отрицательно влияющих на качество конечного продукта.
  • Вибрирование бетонной смеси при укладке. При вибрировании из смеси выходит лишний воздух, снижающий прочностные характеристики. Однако излишнее вибрирование приводит к расслаиванию смеси.
  • Соблюдение оптимальных условий твердения.

Способы определения прочности

ГОСТ 10180-2012 регламентирует правила подготовки образцов и проведения испытаний прочности на сжатие в лабораторных условиях

В соответствии со стандартом образцами могут быть:

  • куб с длиной ребра 100, 150, 200, 250, 300 мм;
  • цилиндр с диаметром основания 100, 150, 200, 250, 300 мм, высотой не менее диаметра основания.

Образцы изготавливают с соблюдением условий, соответствующих реальным условиям твердения смеси. Твердение продукта может происходить в нормальных условиях или с использованием тепловой обработки. Испытания проводят на испытательной машине-прессе. Образец нагружают со стабильной скоростью нарастания усилия до его разрушения.

Существуют неразрушающие способы контроля прочности бетона, позволяющие контролировать этот параметр в уже готовой конструкции:

  • Механические. Эти испытательные технологии основаны на показаниях приборов. Основные методы – упругий отскок, ударный импульс, отрыв, скалывание, отрыв со скалыванием.
  • Ультразвуковой. Основой этого способа является зависимость скорости прохождения ультразвуковых волн через материал от его прочностных характеристик. Технология востребована для определения прочностных характеристик длинномерных строительных конструкций – ригелей, колонн, балок.

Области применения бетона различных классов прочности

  • В7,5. Такие бетоны содержат малое количество вяжущего и относятся к категории «тощих». Применяются в основном при проведении подготовительных строительных работ. С их помощью изготавливают подбетонки, на которых устраивается железобетонный фундамент. Такой подготовительный бетонный слой не допускает протекания цементного молочка из фундаментной бетонной смеси в грунт.
  • В10-В12,5. Такие материалы также обладают невысокой прочностью. Применяются для устройства подбетонного слоя, тонкослойных стяжек, фундаментов легких строительных конструкций.
  • В15-В20. Бетонные смеси этих классов прочности востребованы в малоэтажном индивидуальном строительстве при возведении небольших строений, для устройства внутренних перегородок, лестничных маршей.
  • В22,5. Широко востребованы в малоэтажном жилом и промышленном строительстве, при производстве ЖБИ.
  • В25-В22,7. Применяются при сооружении высоконагружаемых строительных конструкций – несущих балок, плит, колонн в многоэтажных зданиях.
  • В30 и выше. Такие бетоны, обладающие высокой прочностью, применяют в промышленном строительстве и для сооружения объектов высокой опасности и ответственности. Из-за высокой схватываемости применяются с добавками, регулирующими скорость твердения смеси.

  • Строитель с 20-летним стажем
  • Эксперт завода «Молодой Ударник»

В 1998 году окончил СПбГПУ, учился на кафедре гражданского строительства и прикладной экологии.

Занимается разработкой и внедрением мероприятий по предупреждению выпуска низкокачественной продукции.

Разрабатывает предложения по совершенствованию производства бетона и строительных растворов.

Прочность на разрыв единица измерения

TD — направление, перпендикулярное машинному (поперечное).

Перевода не требует. Пишите MD и TD, специалисты поймут.

Для справок:
Упаковка для пищевой .
. при 50%-ном растяжении в TD ASTM D882-67 11,5 Мn/m2 Максимальный
предел прочности на разрыв в MD ASTM D882 .

. Максимальный предел прочности
на разрыв в TD, ASTM D882-67, 300, Mn/m 2. .

Специально для Владимира:

Почитайте, пожалуйста, про машинное направление:
Subscribe.Ru : Упаковка для пищевой .
. предел прочности на разрыв в ТD ASTM D882-67 22 Mn . FTR-7
190 G MD — машинное (продольное) направление; TD .

Еврофилм
. Максимальный предел прочности на разрыв в ТD,
ASTM . MD — машинное (продольное) направление TD .

Опять же Владимиру:

А это про поперечное (перпендикулярное машинному) направление:

Subscribe.Ru : Упаковка для пищевой .
. предел прочности на разрыв в ТD . перпендикулярное
машинному (поперечное); d — временной .

Еврофилм
. предел прочности на разрыв в ТD, ASTM . перпендикулярное
машинному (поперечное) d — временной .

Grading comment

Thank you!
За этот ответ присуждено 3 очка KudoZ

Пояснение:
MD — машинное (продольное) направление

TD — направление, перпендикулярное машинному (поперечное).

Перевода не требует. Пишите MD и TD, специалисты поймут.

Для справок:
Упаковка для пищевой .
. при 50%-ном растяжении в TD ASTM D882-67 11,5 Мn/m2 Максимальный
предел прочности на разрыв в MD ASTM D882 .

. Максимальный предел прочности
на разрыв в TD, ASTM D882-67, 300, Mn/m 2. .

Специально для Владимира:

Почитайте, пожалуйста, про машинное направление:
Subscribe.Ru : Упаковка для пищевой .
. предел прочности на разрыв в ТD ASTM D882-67 22 Mn . FTR-7
190 G MD — машинное (продольное) направление; TD .

Еврофилм
. Максимальный предел прочности на разрыв в ТD,
ASTM . MD — машинное (продольное) направление TD .

Опять же Владимиру:

А это про поперечное (перпендикулярное машинному) направление:

Subscribe.Ru : Упаковка для пищевой .
. предел прочности на разрыв в ТD . перпендикулярное
машинному (поперечное); d — временной .

Еврофилм
. предел прочности на разрыв в ТD, ASTM . перпендикулярное
машинному (поперечное) d — временной .

Grading comment

Thank you!

Пояснение:
tensile strength=прочность на РАСТЯЖЕНИЕ,предел прочности при РАСТЯЖЕНИИ

MD stands there for Medium Density (esp. with polyethylene and TD means probably Target Density
http://www.matweb.com/measurements/tensilestrength.htm

MD stands there for Medium Density (esp. with polyethylene and TD means probably Target Density
http://www.matweb.com/measurements/tensilestrength.htm

Click the red seal for more information on what it means to be a ProZ.com Certified PRO. ‘, this, event, ‘300px’)» onMouseout=»delayhidetip()»> Vladimir Dubisskiy
США
Local time: 00:15
Работает в области
Родные языки: русский, украинский
1 corroborated select project
in this pair and field

Пояснение:
Tensile strength (MPa)
Прочность на разрыв (в мегапаскалях (МПа))при.
Tensile strain at break (%)
Относительная деформация растяжения при разрыве (%)при.
————————-
MD Tensile Strength ASTM D5035 658 lbs/ft (9.60 kN/m) 468 lbs/ft (6.83 kN/m)
MD Elongation ASTM D5035 13.40% 17.80%
TD Tensile Strength ASTM D5035 910 lbs/ft (13.28 kN/m) 742 lbs/ft (10.83 kN/m)
TD Elongation ASTM D5035 10.90% 12.10%
MD Tensile Strength ASTM D5035 335 lbs/ft (4.89 kN/m) 232 lbs/ft (3.38 kN/m)
TD Tensile Strength ASTM D5035 596 lbs/ft (8.69 kN/m) 488 lbs/ft (7.12 kN/m)
MD Tensile Strength ASTM D5035 528 lbs/ft (7.70 kN/m) 330 lbs/ft (4.81 kN/m)
MD Elongation ASTM D5035 28% 48%
TD Tensile Strength ASTM D5035 837 lbs/ft (12.21 kN/m) 687 (10.02 kN/m)
TD Elongation ASTM D5035 12% 14%

*Minimum average roll values (MARV) are calculated as the typical plus or minus two standard deviations. Statistically, this yields a 97.7 % degree of confidence that any samples taken will exceed the value reported. ?Typical? indicates the mean or average.

**ASTM D1682 (4 inch strip) Tensile Strength and % Strength Retention of material following 1000 hrs exposure in Xenon-Arc
Weatherometer.

MD Machine direction TD Transverse direction

Login or register (free and only takes a few minutes) to participate in this question.

You will also have access to many other tools and opportunities designed for those who have language-related jobs (or are passionate about them). Participation is free and the site has a strict confidentiality policy.

Краткое введение в предел прочности на разрыв

202012 августа

Краткое введение в предел прочности на разрыв

Прочность на разрыв (предел прочности) — критическое значение перехода металла от однородной пластической деформации к локальной концентрированной пластической деформации.,Это также максимальная несущая способность металла при статическом растяжении.。Прочность на разрыв — это сопротивление максимально равномерной пластической деформации материала.,Перед испытанием на растяжение образец подвергается максимальному растягивающему напряжению.,Деформация равномерная,Но помимо,Металл начинает сжиматься,Концентрированная деформация;Для хрупких материалов без равномерной пластической деформации (или очень небольшой),Он отражает сопротивление материала разрушению.。Обозначение — Rm (старый национальный стандарт GB / T 228-1987 предусматривает обозначение предела прочности на разрыв σb),Единица измерения МПа。

Символ определения

Образец находится в процессе растяжения,После того, как материал переходит в стадию упрочнения после стадии текучести, максимальная сила (Fb), которую материал будет выдерживать, когда размер поперечного сечения значительно уменьшится,Напряжение (σ), полученное делением на исходную площадь поперечного сечения (So) образца,Называется предел прочности на разрыв или предел прочности (σb),Единица Н / мм 2 (МП)。Он представляет собой максимальную способность металлического материала противостоять повреждениям при растяжении.。Формула расчета::

куда:Fb–Максимальное усилие, которое испытывает образец при разрыве,N (Ньютон);

Так–Исходная площадь поперечного сечения образца,mm²。

Прочность на растяжение (Rm) означает максимальное напряжение, которое может выдержать материал до разрушения.。Когда сталь поддается определенному уровню,За счет внутренней перестройки зерен,Его устойчивость к деформации снова повышена.,Хотя в это время деформация быстро развивается,Но он может только увеличиваться с увеличением стресса,Пока напряжение не достигнет максимума。После этого,Способность стали сопротивляться деформации значительно снижена.,И большая пластическая деформация происходит в самом слабом месте,Здесь поперечное сечение образца быстро уменьшается.,Сужение,До перелома。Максимальное значение напряжения до разрушения стали под действием растяжения называется пределом прочности или пределом прочности при растяжении.。

(Килограмм силы на единицу площади)

Распространенным методом измерения прочности на разрыв в Китае является использование универсальной испытательной машины для определения прочности материалов на растяжение / сжатие.。

Для хрупких материалов и пластмасс без образования шейки,Самая высокая растягивающая нагрузка — это разрывная нагрузка.,следовательно,Его прочность на разрыв также представляет собой сопротивление разрыву.。Для пластиковых материалов, образующих шейку,Его предел прочности на разрыв представляет собой сопротивление максимальной равномерной деформации.,Он также указывает на предельную несущую способность материала при статическом растяжении.。Для таких деталей, как трос,Прочность на разрыв — более значимый показатель производительности。Прочность на растяжение легко определить,И хорошая воспроизводимость,Существует определенная взаимосвязь с другими механическими свойствами, такими как предел выносливости и твердость.,следовательно,Он также используется как одно из обычных механических свойств материалов для оценки качества продукта, технических характеристик процесса и т. Д.。

Явление шейки и прочность на разрыв

Феномен и значение шейки

Сужение — это особое явление, при котором деформация пластичных металлических материалов сосредоточена в определенной области во время испытания на растяжение.,

Это результат деформационного упрочнения (физический фактор) и уменьшения поперечного сечения (геометрический фактор).。Пластическая деформация однородна до точки b максимального значения кривой растягивающего усилия-удлинения (растяжения) металлического образца.,Поскольку деформационное упрочнение материала увеличивает несущую способность образца,Он может компенсировать снижение несущей способности за счет уменьшения сечения образца.。После пункта б,Поскольку деформационное упрочнение не успевает за развитием пластической деформации,Сосредоточьте деформацию в локальной области образца для образования шейки.。Df перед точкой m>0;Df после точки b 2

Прочность на разрыв при расщеплении

Образец керна такой же, как образец куба,Также может быть проведено испытание на разрыв при раскалывании。Методика тестирования такая же, как и у кубического тестового блока.。

Прочность на разрыв основного образца бетона можно рассчитать следующим образом::

FУЗД,кор—— Максимальная сила раскалывания, измеренная при испытании образца керна на раскалывание,N;

АТ.С.—— Площадь поперечного сечения разрушения при растяжении раскола образца керна,мм 2

Прочность древесины: виды испытаний и формулы

Определение прочности и виды нагрузок

Одним из важных механических свойств древесины является ее устойчивость к разрушающим механическим воздействиям, то есть прочность. Зависит она от разных факторов, самые важные из которых:

  • Плотность;
  • Влажность;
  • Присутствие пороков;
  • Порода древесины;
  • Наличие разрушающих нагрузок в разных направлениях (например, поперек или вдоль волокон), то одно и тоже дерево будет иметь разную прочность.

На прочности дерева отражается содержание влаги в клеточных оболочках – связанная влага. Чем больше влажность, тем меньше прочность. Однако это правило действует до показателя влажности 30 %, который является пределом гигроскопичности. После достижения этого предела прочность остается неизменной даже при увеличении количества влаги. При определении показателей прочности образцы древесины должны иметь одинаковую влажность. Продолжительность разрушающей нагрузки также сильно отражается на показателе прочности.

Нагрузки различают по силе, направлению и времени воздействия. Статические действуют с постоянной силой или с постепенным увеличением, а динамические очень недолго, только в момент соприкосновения с поверхностью дерева. Эти нагрузки принято называть разрушительными, поскольку от их действия структура древесины нарушается. Крайние показатели прочности, при которых древесина способна сохранить свою структуру, называют пределом прочности. Единица измерения прочности – Па/см2 или иначе кгс на 1 кв. см.

Прочность измеряют во всех направлениях – продольном, радиальном и тангенциальном. При испытаниях применяют силы растяжения и сжатия, а также испытывают на изгиб и скалывание. Ниже приведена таблица механических свойств древесины.

Прочность на сжатие имеет большое значение в строительных конструкциях, таких, как опоры и стойки. Ее измеряют в разных направлениях.

Испытание механических свойств древесины на сжатие

Прочность на сжатие проверяют в продольном и поперечном по отношению к волокнам направлению. При этом при продольном сжатии происходит уменьшение длины образца. При испытании образца древесины мягких сортов с высокой влажностью торцы начинают сминаться, а боковые части выпирают в сторону. Древесина твердая и сухая при продольном сжатии начинает разрушаться и части образца сдвигаются в разные стороны.

Усредненное значение предела прочности продольного сжатия для всех видов древесины около 500 кгс на 1 кв. см.

Величина прочности при поперечном сжатии намного меньше, чем при продольном и их соотношение друг к другу составляет 1:8. Момент, в который происходит разрушение древесины при поперечном сжатии не легко определить, как и силу давления, при которой оно происходит.

Обычно проверяют прочность на поперечное сжатие в двух направлениях – радиальном и тангенциальном. При этом лиственные породы имеют прочность в 1.5 раза больше при сжатии в радиальном направлении, нежели при тангенциальном. Прочность древесины хвойных пород при сжатии в радиальном направлении ниже, чем при тангенциальном сжатии.

Испытание механических свойств древесины на сжатие: а — вдоль волокон; б — поперек волокон — радиально; в — поперек волокон — тангенциально.

Прочность древесины на растяжение

Прочность древесины при растяжении вдоль волокон колеблется в пределах 1100 – 1400 кгс/см2, правда использование ее в деталях, работающих на растяжение затруднено в связи с тем, что она не выдерживает нагрузок в местах крепления. В этих местах на древесину действуют силы сжатия и скалывания, а они имеют более низкие значения. Ярким примером использования древесины с работой на растяжение являются оглобли в конных повозках.

В поперечном направлении прочность на растяжение низкая и ее значение не превышает 5% от предела прочности на растяжение в продольном направлении. Поэтому в тех случаях, когда деталь из древесины работает на растяжение, применяют только древесину с продольным расположением волокон.

Величина поперечной прочности древесины на растяжение учитывается при резке и сушке материала, режимы этих операций подбираются в прямой зависимости от прочности.

Испытание механических свойств древесины на изгиб

Усредненная прочность всех пород деревьев при изгибе принято считать равной 1000 кгс/см2, что в два раза больше прочности на сжатие и примерно на 30% меньше прочности при продольном растяжении. При изгибе разные слои древесины испытывают разное напряжение — верхний слой получает сжатие, а нижний, напротив, — растяжение. В средней части образца, подвергаемого изгибу, находится нейтральная область, которая не испытывает никаких напряжений. Зона, испытывающая напряжение растяжения, начинает разрушаться в первую очередь – крайние волокна древесины разрываются.

Визуально определить прочность древесины на изгиб можно по характеру излома – качественные образцы будут иметь неровный излом с наличием большого количества щепы, а дефектная – почти ровный, без выступов и вмятин.

При изгибе одна часть заготовки подвергается сжатию, другая – растяжению, поэтому показатель сопротивления изгибу находится между показателями сопротивлений сжатия и растяжения. Отношение сопротивления сжатия к сопротивлению растяжения колеблется от 1.7 до 2.2 у разных пород дерева.

Влажность дерева также отражается на показателе сопротивления статическому изгибу – при изменении влажности на 1%, сопротивление изменяется на 4%.

По величине сопротивления ударному изгибу можно определить вязкость или хрупкость древесины. Если сопротивление невелико, древесина хрупкая, а высокий показатель сопротивления говорит о большой вязкости древесины.

Измеряют сопротивление ударному изгибу с помощью маятника, замеряя работу Q кг/м, которая требуется маятнику определенного веса для того, чтобы сломать испытуемый брусок. Само сопротивление вычисляют по формуле A = Q/bh2, в которой b и h – соответственно ширина и высота сечения образца в сантиметрах.

Испытание механических свойств древесины на изгиб

Прочность древесины при сдвиге

Смещение в заготовке одной части древесины относительно другой называется сдвигом. Сдвиги образуются под действием внешних нагрузок разного характера. Выделяют сдвиги, возникающие от скалывания вдоль или поперек волокон и от распила (перерезания).

Прочность при скалывании меньше прочности продольного сжатия примерно в 5 раз. А если сравнивать прочность скалывания вдоль и поперек волокон в одном образце, то предел прочности при продольном скалывании в два раза выше, чем при поперечном. Прочность древесины при перерезании выше прочности при скалывании раза в четыре.

Самая прочная древесина

Все породы деревьев различаются по прочности. Из хвойных деревьев наиболее прочной считается лиственница. Это дерево обладает уникально твердой и долговечной древесиной, устойчивой к гниению и влагостойкой. Смолистая и прочная, она замечательна еще и тем, что, находясь в воде способна приобретать прочность камня. Древесина лиственницы используется в производстве мебели и в строительстве. В строительстве подводных сооружений ей практически нет альтернативы. Успешно применяется в кораблестроении.

Из лиственных пород, используемых человеком, первое место по прочности занимает дуб. Древесина очень долговечная, гибкая, имеет великолепные декоративные качества и применяется во многих областях промышленности. Из нее делают дорогую мебель, паркет, хороша для поделок.

До настоящего времени в Литве, в маленькой деревушке Стелмуж, растет дуб, возраст которого более 1500 лет. На высоте человеческого роста диаметр ствола составляет 4 метра, а обхват дерева на трехметровой высоте равен 13.5 метров. Этот дуб является памятником природы, он – самый старый представитель дубовых деревьев во всей Европе.

В мире есть несколько образцов деревьев с «железной» древесиной. Амазонское дерево в Бразилии, азобе в Африке, темир-агач в Азербайджане и Иране. Закавказские леса и леса Северной Ирландии – место произрастания персидской парротии, которая также поражает своей прочностью. К сожалению, все перечисленные деревья редко встречаются в природе, и их находки – это настоящее чудо.

Ссылка на основную публикацию
Adblock
detector