4 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Простейшие способы проверки исправности электрорадиоэлементов

Простейшие способы проверки исправности электрорадиоэлементов

Проверка проволочных и непроволочных резисторов

Для проверки проволочного и непроволочного резисторов постоянного и переменного сопротивления необходимо проделать следующее: произвести внешний осмотр; проверить работу движущего механизма переменного резистора и состояние его частей; по маркировке и размерам определить номинальную величину сопротивления, допустимую мощность рассеяния и класс точности; омметром измерить действительную величину сопротивления и определить отклонение от номинала; у переменных резисторов измерить еще и плавность изменения сопротивления при движении ползунка. Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного класса точности, а контакт ползунка с токопроводящим слоем постоянен и надежен.

Проверка конденсаторов всех типов

К электрическим неисправностям относятся: пробой конденсаторов; короткое замыкание пластин; изменение номинальной емкости сверх допуска из-за старения диэлектрика, попадания на него влаги, перегрева, деформации; повышение тока утечки из-за ухудшения изоляции. Полная или частичная потеря емкости электролитических конденсаторов происходит в результате высыхания электролита.

Простейший способ проверки исправности конденсатора — внешний осмотр, при котором обнаруживаются механические повреждения. Если при внешнем осмотре дефекты не обнаружены, проводят электрическую проверку. Она включает: проверку на короткое замыкание, на пробой, на целость выводов, проверку тока утечки (сопротивление изоляции), измерение емкости. При отсутствии специального прибора емкость можно проверить другими способами, зависящими от емкости конденсаторов.

Конденсаторы большой емкости (1 мкФ и выше) проверяют пробником (омметром), подключая его к выводам конденсатора. Если конденсатор исправен, то стрелка прибора медленно возвращается в исходное положение. Если же утечка велика, то стрелка прибора не вернется в исходное положение.

Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора телефонов и источника тока. При исправном конденсаторе в момент замыкания цепи в телефонах прослушивается щелчок.

Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость приема не уменьшится, значит, обрывов выводов нет.

Проверка катушек индуктивности

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Электрическая проверка катушек индуктивности включает проверку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки. Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление равно нулю.

Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется проверить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

Проверка силовых трансформаторов, трансформаторов и дросселей низкой частоты

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.

К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим — обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.

Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.

Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.

1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)

2. Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.

3. Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.

4. Измерение индуктивности обмотки.

5. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.

Простейшая проверка исправности полупроводниковых диодов

Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого Rnp и обратного Rо6p сопротивлений. Чем больше соотношение Rо6p/Rnp, тем выше качество диода. Для измерения диод подключается к тестеру (омметру) или к ампервольтомметру. При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного полупроводникового прибора.

Простая проверка транзисторов

При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых триодов (транзисторов) без выпайки их из схемы. Один из способов такой проверки — измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором и при соединении базы с эмиттером. При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором — порядка нескольких сотен тысяч или десятков тысяч ом.

Проверка транзисторов, не включенных в схему, на отсутствие коротких замыканий производится измерением сопротивления между их электродами. Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения омметра. Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Для проверки исправности транзисторов омметр подключают к соответствующим выводам транзистора. У исправного транзистора прямые сопротивления переходов составляют 30 — 50 Ом, а обратные 0,5 — 2 МОм. При значительных отклонениях этих величин транзистор можно считать неисправным. Для более тщательной проверки транзисторов используются специальные приборы.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Проверка якоря тестером – рекомендации специалистов

Даже при бережном отношении и правильной эксплуатации техника может выходить из строя под влиянием различных факторов. Среди поломок узлов и деталей электрической системы болгарки чаще всего встречаются неисправности якоря коллекторного электродвигателя. Он может выходить из строя вследствие износа, перегрева или неустойчивого напряжения в сети. Если во время эксплуатации угловая шлифмашина внезапно перестала работать, включать ее и пытаться отремонтировать самостоятельно не стоит, а вот диагностировать причину вполне под силу даже мастеру-самоучке. Проверка якоря болгарки тестером может выполняться в домашних условиях. Для этого, кроме основного инструмента, потребуются специальные приспособления. Вы можете проконсультироваться со специалистами интернет-магазина «ToolParts», чтобы узнать, как прозвонить якорь мультиметром. Необходимая информация предоставляется бесплатно.

Проверка якоря болгарки тестером – возможные результаты диагностики

Среди наиболее распространенных причин выхода оборудования из строя чаще всего встречается межвитковое замыкание якоря болгарки. Его можно обнаружить – прозвонить – с помощью тестера. Мультиметр представляет собой электроизмерительный прибор, который включает функции амперметра, вольтметра и омметра. Им можно не только проверить наличие межвиткового замыкания в обмотке болгарки, но и измерить сопротивление между ламелями. Более простым прибором является тестер. Проверяя с его помощью якорь углошлифовальной машины, можно обнаружить неисправности, вызванные вследствие короткого замыкания.

Как прозвонить якорь мультиметром?

Для выполнения этой процедуры вам понадобится сам измерительный электроприбор и инструменты, чтобы произвести разборку устройства. Как прозвонить якорь мультиметром – инструкция:

  1. Подготовьте рабочую поверхность. Места должно быть достаточно, чтобы расположить необходимые инструменты и изъятые из прибора детали.
  2. Выполните разборку болгарки и достаньте якорь.
  3. Очистите деталь от грязи и пыли.
  4. Пользуясь рекомендациями в представленном видео, вы сможете самостоятельно прозвонить якорь мультиметром.

На начальном этапе диагностики значение измерительного прибора выставляется на отметке 200 кОм. Если в вашем мультиметре нет такой шкалы, то можно ограничиться и 20 кОм. Для прозвона якоря один щуп измерительного прибора прикладывается на массу, а вторым касаются к каждой из пластин. Если на шкале аналогового мультиметра или экране цифрового не появляются никакие показатели, скорее всего в обмотке якоря есть межвитковое замыкание. Точно диагностировать проблему можно с помощью специального прибора, который имеется у профессиональных слесарей.

Особенности выполнения проверки якоря болгарки тестером

Диагностическая процедура поможет точно определить неисправность детали электродвигателя. Выполнить проверку якоря болгарки тестером позволит прибор, который имеется в арсенале инструментов многих электриков-любителей. С помощью тестера можно проверять не только якоря болгарок, но и статорные обмотки других электромоторов. В представленном ниже видео можно увидеть один из таких самодельных измерительных приборов в действии.

При включении тестера в сеть загорается индикатор. Красный свет без прикладывания технического приспособления к якорю означает готовность устройства к выполнению проверки. Рабочая активная поверхность измерительного прибора имеет две точки соприкосновения с исследуемой. Одна из них – это катушка генератора, вторая – катушка завитков связи. Во время проверки якоря болгарки тестером подставлять эту поверхность необходимо к исследуемому пазу. Проследите, чтобы датчики не выходили за пластины якоря одновременно с обеих сторон.

Если электродеталь исправна или перемотана, то во время ее проверки тестером напротив каждого из пазов индикатор будет гореть зеленым светом. При наличии неисправности в якоре угловой шлифовальной машины, в частности, межвиткового замыкания, в месте его локализации на индикаторе прибора будет отмечаться красный свет. Будьте внимательны при выполнении диагностической процедуры, чтобы добиться правильного соприкосновения поверхностей при проверке якоря болгарки тестером. Не следует исключать из причин выхода угловой шлифовальной машины из строя механические повреждения, которые можно заметить визуально без прозвона мультиметром. Они могут быть как значительными, так и мелкими. Вы можете заметить поломку при осмотре, разобрав болгарку. Диагностировать такие неисправности необходимо до проверки якоря на межвитковое замыкание.

Если вы не имеете опыта разборки электроинструмента или подготовки к работе с измерительными приборами для прозвона якоря мультиметром и не уверены в собственных силах, не стоит вмешиваться в конструкцию болгарки. Не экспериментируйте, чтобы не повредить угловую шлифовальную машину. В таком случае для обнаружения причины поломки электроинструмента и выполнения проверки якоря болгарки тестером лучше обратиться в сервисный центр или к квалифицированным слесарям, которые специализируются на ремонте оборудования.

Какие проблемы в работе прибора можно обнаружить при проверке якоря болгарки тестером

Если вы обладаете достаточными знаниями для выполнения правильной разборки электроинструмента, то в ряде случаев сможете собственноручно диагностировать причину поломки устройства. Проверка якоря болгарки тестером на межвитковое замыкание позволит определить дальнейшие действия относительно обнаружения неисправностей или ремонта техники. Если деталь не повреждена, но инструмент по-прежнему не работает, обращайтесь за помощью к квалифицированным специалистам. Проверка якоря болгарки тестером позволила точно обнаружить причину выхода оборудования из строя? Ремонт техники при наличии необходимого инструмента можно выполнить самостоятельно в таких случаях:

  • поврежденную в верхних видимых слоях обмотку можно попытаться запаять. Такой якорь прослужит еще некоторое время. После запайки его необходимо проверить или прозвонить мультиметром;
  • при межвитковом замыкании требуется перемотка обмотки или же замена якоря.

Диагностика поломки и ремонт угловой шлифовальной машины может выполняться под напряжением. Эту работу, ради собственной безопасности, перепоручите профессионалам.

Рекомендации по поводу того, как прозвонить якорь мультиметром, вы можете получить у менеджеров интернет-магазина «ToolParts». На сайте надежного поставщика представлены якоря, стартера, конденсаторы, подшипники, диски и прочие детали для различных инструментов. Доступные цены на нашу продукцию позволят вам недорого отремонтировать дрель, перфоратор, бензопилу, мотокосу и другое, необходимое в хозяйстве оборудование. Также покупайте в магазине «ToolParts» запчасти для ремонта бытовой техники, в частности, пылесоса. Вы можете сделать заказ на сайте в любой удобный момент или оформить покупку в телефонном режиме в рабочее время. Доставка товаров совершается во все населенные пункты Украины.

Как локализовать короткое замыкание в витой паре при помощи кабельного тестера Greenlee NetCat Pro (NC-500)?

Короткое замыкание в паре и между жилами разных пар – распространенное повреждение в структурированных кабельных сетях. Этот тип повреждения легко найти при помощи большинства кабельных тестеров, однако далеко не каждый из них может определить расстояние до короткого замыкания. Одним из тестеров, обладающим таким функционалом является Greenlee NetCat Pro. Продемонстрируем процесс поиска места короткого замыкания в витой паре при помощи этого прибора.

Включим кабельный тестер, мы попадаем в главное меню.

Рисунок 1 – Главное меню кабельного тестера Greenlee NetCat Pro NC-500

Тестер Greenlee NetCat Pro очень прост в эксплуатации. Он имеет сенсорный ЖК дисплей и интуитивно понятное меню.

Для локализации короткого замыкания в паре (разъем RJ45) используется режим многопарного тестирования – (Multi-pair test). Заходим в него и подключаем прибор к тестируемому кабелю.

Поиск места короткого замыкания в паре

Если жилы одной из тестируемых пар будут замкнуты между собой, это будет в автоматическом режиме отображено на экране тестера.

На рисунке 2 видно короткое замыкание жил 7 и 8 на расстоянии 106,2 м.

Рисунок 2 – Определение расстояния до короткого замыкания в паре кабельным тестером

Использовать в этом режиме удаленный идентификатор не обязательно. Но если он будет установлен (Рис. 3), на точность определения расстояния до короткого замыкание это не сильно повлияет.

Рисунок 3 – Определение расстояния до короткого замыкания в паре кабельным тестером Greenlee NetCat Pro NC-500 с подключенным удаленным модулем

Поиск короткого замыкания между жилами разных пар

В режиме многопарного тестирования тестер Greenlee NetCat Pro NC-500 определяет и этот тип повреждения, однако не может отобразить расстояние до него.

Рисунок 4 – Определение короткого замыкание между жилами разных пар в режиме многопарного тестирования

Для определения расстояния может быть использован режим попарного тестирования (One Pair/Coax test). Для этого понадобится доступ к каждой паре в отдельности. Это можно реализовать, разобрав розетку или патчкорд. Но удобнее использовать модульный адаптер GT-PA1902 , который входит в расширенный комплект кабельного тестера GT-NC-KIT или поставляется отдельно.

Подключившись при помощи крокодилов к парам 12 и 45 (рисунок 5, 6) можно убедиться, что короткого замыкания в парах нет.

Рисунок 5 – Диагностика пары 4-5 в режиме попарного тестирования

Рисунок 6 – Диагностика пары 1-2 в режиме попарного тестирования

Следует заметить, что модульный адаптер оказывает влияние на характеристики LAN кабеля, что приведет к дополнительной погрешности в определении расстояния. Чтобы избежать этой погрешности, необходимо определить коэффициент NVP для кабеля с модульным адаптером и повторить измерения. Если создать в списке кабелей новый тип кабеля «кабель с модульным адаптером» и прописать необходимый NVP, то в будущем ускорит процесс измерений и не повлияет на их точность.

Примечание. Кабельный тестер Greenlee NetCat Pro имеет встроенную базу кабелей и позволяет дополнять ее вручную. Для этого тестер необходимо подключить к кабелю с заведомо известной длиной, и изменением коэффициента NVP привести показания прибора в соответствие с длиной кабеля. Используя коэффициент, полученный в ходе указанной операции, можно создать новый кабель в базе.

Подключившись к жилам из разных пар: 1-4 и 2-5 можно легко определить, что между жилами 2 и 5 имеется повреждение на расстоянии 90.4 м., что видно на рисунке 8 (результат будет более точным, если установленный коэффициент NVP будет учитывать подключенный модульный адаптер).

Рисунок 7 – Диагностика жил 1-4 в режиме попарного тестирования

Рисунок 8 – Диагностика жил 2-5 в режиме попарного тестирования

Таким образом, задача поиска места короткого замыкания в LAN кабеле легко решается при помощи кабельного тестера Greenlee NetCat Pro.

Как проверить болгарку мультиметром?

В хозяйстве любого домашнего мастера, не говоря уже о профессионалах, почти всегда есть угловая шлифовальная машина (УШМ), именуемая в народе «болгаркой». Инструмент популярен, любим и уважаем, поэтому любая его неисправность воспринимается весьма болезненно.Но, прежде чем отправляться в специализированный отдел за новой болгаркой, стоит попытаться самостоятельно разобраться с поломкой. Разобрав УШМ, можно визуально обнаружить некоторые механические повреждения, а вот дефекты электрической части нужно проверять при помощи специальных инструментов, одним из которых является мультиметр. Далее мы рассмотрим, как проверить болгарку мультиметром.

По каким причинам УШМ может выйти из строя

Чаще всего инструмент перестает работать, когда поврежден якорь (ротор). При вскрытии корпуса можно увидеть обгорание и неравномерный износ щеток. Косвенными признаками такой поломки являются нагрев инструмента и вибрация при работе.

Электрические поломки обнаружить сложнее. К ним относятся:

  • нарушение сопротивления между обмоткой и сердечником;
  • повреждения обмотки якоря;
  • замыкания в витках.

Также довольно распространенными причинами отказа инструмента могут быть:

  • обрыв проводов в кабеле питания и неисправность выключателя – болгарка не включается;
  • межвитковое замыкание в обмотках ротора и неисправность электроники приводят к тому, что инструмент работает только на малых оборотах;
  • искрение по причине стирания угольных щеток или сильного износа коллектора двигателя;
  • появление дыма случается при замыканиях в обмотках статора или ротора, а также при излишне интенсивной работе (когда каналы воздушного охлаждения забиты пылью).

Как видно, многие поломки обусловлены неисправностями электрической части инструмента. Поэтому нужно уметь обнаруживать их прежде, чем принять решение об отправке инструмента в ремонтную мастерскую.

Как прозвонить якорь мультиметром

Для грамотного проведения проверки нужно знать принцип работы и устройство ротора. Его основными конструктивными частями являются:

  • сердечник круглой формы, представляющий собой набор пластин, изготовленных из электротехнической стали;
  • обмотка, определенным образом навитая в пазы сердечника.

Следуя специальной схеме, в каждый из пазов укладывают по два проводника обмотки. Каждый из проводников представляет собой половину витка. Его концы попарно соединяют на ламелях. Конец последнего витка и начало первого располагаются в одном пазу и замкнуты на одну ламель.

До того как проверить якорь мультиметром, нужно его внимательно осмотреть на предмет различных повреждений:

  • оплавленной проводки;
  • подгоревшего изоляционного лака;
  • деформация витков;
  • наличие токопроводящих частиц (вроде остатков припоя), которые часто становятся причиной короткого замыкания;
  • искривление загнутых краешков ламелей (петушков), соединяющих их с обмоткой, приводящих к выгоранию ламелей;
  • скопление графита от разрушающихся щеток между ламелями, которое также становится причиной короткого замыкания.

Пошаговые инструкции

Непосредственно проверка якоря мультиметром происходит следующим образом:

  1. Разъемы щупов прибора вставляют в соответствующие гнезда.
  2. Выставляют режим измерения сопротивления. Диапазон измерения – 200 Ом.
  3. Щупами поочередно касаются каждых двух соседних ламелей, фиксируя результаты, отображающиеся на дисплее мультиметра. Прозванивать придется последовательно каждую пару соседних пластин.

Расшифровываем результаты

Расшифровка результатов проверки якоря мультиметром:

  • В случае, когда сопротивление между всеми парами соседних пластин одинаковое, делают вывод об исправности обмотки якоря.
  • Если сопротивление составляет менее 1 ОМ или близка к нулю, то между витками есть короткое замыкание.
  • Если величина сопротивления превышает среднее в два или более раз, нужно искать обрыв витков обмотки. Когда сопротивление очень велико, на экране цифрового прибора вообще ничего не отразится, а на аналоговом устройстве стрелка будет зашкаливать.

Проверка исправности статора

Статор – это неподвижная часть электродвигателя, создающая электромагнитное поле, в котором вращается ротор. Причиной отказа часто бывает либо короткое замыкание, либо обрыв витков обмотки (катушки) статора.

Это происходит по разным причинам:

  • попадание воды;
  • перегрев, вызванный перегрузкой УШМ;
  • скачок напряжения;
  • резкое выдергивание вилки инструмента из розетки.

Признаки, указывающие на поломку статора:

  • появление дыма;
  • запах горелой изоляции;
  • перегрев корпуса болгарки;
  • прекращение вращения вала или его замедление;
  • резкий самопроизвольный набор оборотов.

Пошаговые инструкции

Проверить статор также можно при помощи мультиметра:

  1. Разъемы щупов вставляют в соответствующие гнезда на корпусе тестера.
  2. Прибор устанавливают в режим измерения сопротивления. Диапазон измерений ставят от 20 Ом до 200 Ом.
  3. Щупы поочередно подносят к обмоткам и фиксируют показания на экране.

Расшифровываем результаты

Результаты прозвонок могут быть следующими:

  • Тестер везде фиксирует одинаковое сопротивление – катушка статора (обмотка) исправна.
  • В некоторых точках сопротивление отличается – есть короткое замыкание в обмотке, либо имеется обрыв одного из витков.

Таким образом, имея в своем распоряжении даже самый простой мультиметр, можно определить характер неисправности болгарки и принять взвешенное решение о том, стоит ли ее ремонтировать или лучше приобрести новую. Хотя, для диагностики лучше все-таки сдать инструмент в мастерскую, где больше возможностей и приборов для экспертного заключения.

Теперь вы знаете, как проверить болгарку мультиметром.

Вопрос — ответ

Вопрос: Так все-таки как правильно называть подвижную часть двигателя «ротор» или «якорь»?

Имя: Михаил

Ответ: В том, что касается болгарки, в отношении вращающейся части электродвигателя используют оба термина.

Вопрос: Какой мультиметр лучше использовать для прозвонки болгарки?

Имя: Роман

Ответ: Можно одинаково успешно использовать оба вида – и аналоговый и цифровой. Оба прибора одинаково эффективно покажут величину интересующих параметров. Но непрофессионалы чаще используют цифровой.

Вопрос: Можно ли перемотать обмотку ротора в домашних условиях, если при прозвонке мультиметром была обнаружена неисправность обмотки?

Имя: Александр

Ответ: Если вы хорошо разбираетесь в электротехнике и конкретно в электродвигателях, то можете рискнуть. Но для этого понадобится крайне аккуратно работать, соблюдая схему намотки и избегая повреждения контактов коллектора при удалении сгоревшей обмотки.

Вопрос: Перед пропиткой новой обмотки перемотанного ротора нужно проверять ее мультиметром?

Имя: Ильдар

Ответ: Чтобы исключить наличие пробоя свежей обмотки, ее обязательно нужно проверить мультиметром. И только после этого можно прогревать якорь и пропитывать новую обмотку эпоксидной смолой.

ТЕСТЕР ДЛЯ ПРОВЕРКИ НА КОРОТКОЕ ЗАМЫКАНИЕ

В данной статье описывается простой тестер наличия контакта, основанный на ATtiny85 и пьезо-зуммере, предназначенный для проверки цепей проводки, или трассировки дорожек на печатной плате. Он имеет низкое входное сопротивление, для того чтобы избежать ложных срабатываний, а через цепь проходит меньше 100 мкА при испытании, для того чтобы не повредить чувствительные радиокомпоненты. Прибор питается от небольшой 3 В батарейки и автоматически отключается, когда не используется, что устраняет необходимость включения/выключения (установки переключателя).

При работе с печатными платами с очень тонкими проводниками очень полезно иметь небольшой, портативный тестер, чтобы проверить SMD пайку. Хотя большинство мультиметров включают в себя режим тестирования сопротивления, для удобства решено было разработать автономный инструмент со следующими преимуществами:

  • Меньше и удобнее, чем мультиметр.
  • Малое сопротивление, для предотвращения ложных срабатываний из-за других компонентов.
  • Быстрая реакция на КЗ.
  • Низкий ток, безопасный для чувствительных деталей на схеме.

Эта схема выдаёт всего 100 мкА через зонды, что в 10 раз меньше, чем большинство мультиметров и самодельных прозвонок. Нет кнопки вкл/выкл, так что нет никакой опасности оставить его включенным и посадить батарею. Тестер автоматически переходит в спящий режим, если он не используется в течение минуты, причём расход энергии в режиме ожидания составляет менее 1 мкА — срок службы батареи несколько лет. Светодиод тут показывает, что схема включена — это необязательно, но лучше иметь подтверждение того, что он работает.

На первый взгляд, использование микроконтроллера для этого прибора кажется излишним, но потребовалось бы довольно много дискретных компонентов, чтобы удовлетворить все эти требования.

Как это работает

Тестер использует аналоговый компаратор в ATtiny85 для обнаружения напряжения на зонде. Схема эквивалентна этой:

Когда напряжение на плюсовом выводе AIN0 больше, чем напряжение на отрицательном выводе AIN1, выход аналогового компаратора, АСО, имеет положительный потенциал. Если исходить из питания 5 В, то напряжение на AIN1 удерживается на уровне 5 В резистором, а напряжение на AIN0 удерживается на 5 мВ делителем резистора.

Если сопротивление между зондами становится меньше, напряжение на AIN1 будет ниже, чем напряжение на AIN0, делая выход компаратора высоким. Затем он используется для включения генератора, управляющего пьезоэлементом.

Преимущество использования аналогового компаратора, а не обычного цифрового входа, заключается в том, что он позволяет точно установить точку, в которой будет активирован вход.

Принципиальная схема тестера

Микроконтроллер ATtiny85 в корпусе SOIC, а резисторы и светодиоды в 0805 SMT. Значения резистора не критичны — выбирайте стандартные значения, которые имеются в наборе резисторов. Пьезо-динамик самый маленький SMD. Схема питается от CR927 элемента, который удерживается с помощью луженой медной проволоки, припаянной в нужном положении — такой себе держатель батареи. Для зонда использован длинный толстый лужённый медный провод, припаянный к плате. Файлы и прошивка — в архиве

Форум по обсуждению материала ТЕСТЕР ДЛЯ ПРОВЕРКИ НА КОРОТКОЕ ЗАМЫКАНИЕ

Куда применить отжившие свой век моторы от винчестеров ПК — подключение такого двигателя и варианты идей.

Теория работы импульсных источников питания и варианты схемотехники.

Самодельная полка-кассетница для хранения мелких деталей и других электрических компонентов.

Как прозвонить электродвигатель мультиметром

Одна из частых неисправностей электродвигателя – отсутствие вращения. Причину поломки можно определить следующим образом. Прежде всего с помощью мультиметра (в режиме вольтметра) проверяется подача питающего напряжения. Если питание подается, проблема заключается в электрической неисправности самого двигателя, соответственно, необходимо проверить целостность подключения и прозвонить обмотки. В большинстве случаев для этого используется обычный мультиметр.

Прозвонка электродвигателя мультиметром

Трехфазный электродвигатель имеет 3 обмотки, у каждой из которых по два вывода. Для измерения сопротивления обмотки мультиметр переводится в режим омметра, его щупы соединяются с парой выводов. Предел измерения — 200 Ом или меньше. Необходимо последовательно прозвонить сопротивления всех трех обмоток. Полярность омметра в данном случае роли не играет.

Как узнать, какое должно быть сопротивление у обмоток? На данном этапе это неважно – главное, чтобы сопротивления были одинаковы. Расхождения показаний по обмоткам должны быть не более 10%.

Логично, что сопротивления обмоток зависят от мощности электродвигателя. У маломощных двигателей (сотни ватт) сопротивление каждой обмотки может составлять десятки Ом, у двигателей средней мощности (несколько киловатт) – единицы Ом. У приводов мощностью десятки киловатт сопротивление составляет доли ома, и обычным мультиметром проблематично точно его измерить.

Если мультиметр показывает 0 Ом, это говорит о коротком замыкании (начало и конец обмотки замкнуты). Можно попытаться устранить замыкание в районе борно, но это удается редко. Обычно в таких случаях двигатель разбирают или перематывают. Если на одной из обмоток мультиметр показывает бесконечность, произошел обрыв, и двигатель также подлежит разборке или перемотке.

Кроме того мультиметр позволяет без труда определить замыкание обмотки на корпус. В этом случае сопротивление между обмоткой и корпусом электродвигателя будет составлять единицы Ом (при нормальной изоляции — Мегаомы).

Проверка борно

Если после прозвонки остались подозрения, нужно вскрыть клеммную коробку (борно). Часто можно увидеть, что в борно плохо затянут крепеж, или отгорели провода. Если для соединения используются гайки, нужно на каждой клемме проверить протяжку не только верхней гайки, которой прикручен питающий проводник, но и осмотреть гайку, которая держит вывод обмотки, уходящий внутрь двигателя.

При отсутствии мультиметра допускается в первом приближении проверять обмотки на обрыв при помощи универсального пробника-прозвонки. Однако, при этом невозможно определить межвитковое и короткое замыкание в обмотках.

Как определить межвитковое замыкание

Межвитковое замыкание можно определить несколькими способами, самый практичный из них – измерение токов по фазам. Если при равенстве фазных напряжений токи отличаются более чем на 15%, и при этом двигатель греется на холостом ходу, можно смело нести его в перемотку.

Выводы

Следуя инструкциям, приведенным в статье, можно при помощи мультиметра определить большинство неисправностей обмотки двигателя. Как правило, при нарушениях целостности обмотки двигатель нужно перематывать.

Проверка на обрыв. Проверка сопротивления.

В целях вашей безопасности и безопасности других проводите рекомендованные здесь тесты каждый раз, когда работаете со стационарной электропроводкой вашего жилья. Хотя эти тесты не следует считать заменой официальных испытаний энергонадзора, тем не менее если ваша работа их успешно пройдет, то она, скорее всего, удовлетворит и требованиям строительных норм.

Контрольно-измерительные приборы

Есть множество различных контрольно-измерительных приборов, или тестеров. Вполне надежные тестеры можно приобрести по доступным ценам.

Аналоговый мультиметр, цифровой мультиметр, пробник напряжения.

Мультиметры

Мультиметры (универсальные измерительные приборы, авометры) показывают значения различных электрических параметров. Как цифровые, так и аналоговые приборы имеют режимы измерения напряжения, тока, сопротивления и других величин. При проверке сопротивления изоляции или неразрывности (отсутствия обрыва) цепи прибор надо выставить на измерение сопротивления.

1. Сопротивление изоляции. Установите диапазон самых больших значений сопротивления.

Для замера сопротивления изоляции установите переключатель на диапазон самых больших значений сопротивления (1); при проверке неразрывности цепи — на диапазон самых малых значений (2).

2. Неразрывность цепи. Установите диапазон самых малых значений сопротивления.

У некоторых мультиметров можно включить звуковой сигнал, свидетельствующий об отсутствии обрыва.

В случае аналогового (стрелочного) прибора показания у края шкалы с наименьшими значениями говорят о неразрывности цепи. Стрелка у другого конца шкалы (с наибольшими значениями) свидетельствует о наличии обрыва в цепи. Цифровой прибор подтверждает отсутствие обрыва в цепи значениями сопротивления менее 10 Ом.

Состояние изоляции удовлетворительное, если аналоговый авометр показывает миллионы Ом (мегомы — МОм), а цифровой — более 10 МОм.

Тестирование

Проведите тесты, чтобы проверить исправность электропроводки. Официальные испытания проводятся специалистами с помощью специальных приборов, и результаты могут отражаться в соответствующем документе.

Для проверки работоспособности мультиметра соедините два щупа вместе в режиме измерения сопротивления — прибор должен показать ноль. При разъединенных щупах он должен показывать бесконечность. Изготовители цифровых мультиметров используют цифру 1 (без каких- либо других цифр после запятой или точки, отделяющей дробную часть) для обозначения бесконечности, что означает просто очень большое сопротивление.

Пробник сетевого напряжения

Такие пробники (индикаторы) используют для проверки наличия напряжения в данном месте сети. Обычно они способны обнаруживать переменное напряжение в диапазоне 125 — 250 В.

При покупке убедитесь в том, что данный пробник рассчитан на напряжение 230 В, а не 12 В (такие пробники предназначены для проверки электропроводки автомобиля).

Использование пробника напряжения

Прикоснитесь к нейтральному контакту одним щупом, а к фазному — другим. Если индикатор загорелся, то в цепи есть напряжение.

Отключена ли электроэнергия?

После отключения электроэнергии на щитке проверьте пробником, что контакты и провода обесточены, прежде чем начинать что-то делать с ними. Обязательно проверяйте работоспособность пробника до и после использования на цепи, в которой точно есть напряжение.

Коснитесь одним щупом нейтрального контакта/провода, а другим — фазного: если индикатор загорелся, то цепь находится

под напряжением. Если индикатор не светится, проверьте снова — теперь между заземляющим контактом/проводом и по очереди фазным и нейтральным. Если индикатор не загорается, можно полагать, что напряжения в цепи нет, — при условии, конечно, что вы проверили сам пробник.

Защитные приборы

В ходе официальных испытаний используют специальную аппаратуру, с помощью которой проверяют, срабатывают ли защитные приборы (автоматы, ВДТ и РОР) в промежутки времени, установленные в нормативных документах. Эти тесты выходят за рамки данной книги.

Однако вы можете по крайней мере проверить, работает ли прибор, нажав контрольную кнопку ВДТ, РОР или переключив рычажок автоматического выключателя. Проверяйте эти приборы каждый раз, когда занимаетесь электромонтажными работами в доме, а также через регулярные интервалы — примерно через три месяца.

Нажмите контрольную кнопку ВДТ. Нажмите кнопку «Т» («Тест»). В окошке должен появиться красный индикатор, и автомат, на котором установлен POP, должен отключиться.

Проверка на обрыв

Проверка на обрыв, или проверка неразрывности, цепи определяет наличие электрического соединения между двумя точками, например между двумя концами провода. Она выполняется с помощью мультиметра в диапазоне самых малых сопротивлений.

Прикоснитесь щупами прибора к разным концам провода. Малые значения сопротивления говорят об исправности цепи. Большие значения указывают на плохой контакт или обрыв цепи.

Так можно проверить, не перегорел ли плавкий предохранитель, нет ли обрыва в цепи или работоспособен ли нагревательный элемент.

Проверка на обрыв. Одним щупом прибора коснитесь одного конца провода, а вторым щупом — другого конца того же провода. Малые значения говорят об отсутствии обрыва цепи.

Проверьте цепь на обрыв между двумя концами фазной жилы.

Повторите для нейтральной (черной или голубой) жилы, а затем для заземляющей (зелено-желтый).

Малые значения (малые сопротивления) означают, что в жилах нет обрыва, как и должно быть. Если тестер показывает высокое сопротивление, то осмотрите каждую розетку, монтажную коробку и т. п. для проверки надежности контактов, после чего снова проведите проверку цепи на обрыв.

Проверка сопротивления изоляции

Этот тест предназначен для того, чтобы убедиться в отсутствии утечки тока через изоляцию между двумя проводниками, например между фазным и нейтральным.

Если утечка тока произойдет, то возможны опасный перегрев, чреватый пожаром, либо короткое замыкание и срабатывание автомата.

Следует проверять все цепи, с которыми вы работаете. Убедитесь, что напряжение отключено, выньте из розеток все электроприборы этой цепи и выключите все выключатели, в том числе выключатели всех стационарных приборов.

На щитке найдите провод нужной цепи и отсоедините его от клеммы. Если вы делаете новую цепь, то сначала проведите этот тест перед окончательным подсоединением к щитку.

Установив мультиметр на самые большие значения сопротивления, приложите один щуп к фазной жиле, а второй — к нейтральной. Если показания прибора низкие,

то изоляция вызывает подозрения и должна быть проверена. Если показания высокие — порядка мегомов — то сопротивление изоляции удовлетворительное. Повторите этот тест между фазной жилой и заземляющей, а затем между нейтральной и заземляющей жилами, обращая внимание на низкие значения сопротивления.

Проверка подозрительной цепи

Отключив напряжение на щитке, проверьте подозрительную цепь, включая все розетки, выключатели, монтажные коробки и т. п., начиная с тех, с которыми работаете.

Типичные причины низкого сопротивления изоляции следующие:

• Сырая стена или вода, затекающая в электроустановочное устройство.

• Гвоздь или шуруп, пробивший провод.

• Старая резиновая изоляция.

• Провода, пережатые в ходе неосторожной замены или ремонта розетки/выключателя.

Проверка резистора мультиметром

В разъем COM вставляется черный щуп, а в VΩ красный. VΩ — это измерение напряжения и сопротивления.

Переводим мультиметр в режим измерения сопротивления. Диодная прозвонка не поможет. Прозвонка измеряет только падение напряжения, но не сопротивление. Начинаем с малого значения в 200 Ом.

Точка на экране показывает предел измерения. Здесь выбран предел 20 кОм.

Мультиметр показывает 2,7 кОм. При измерениях нельзя касаться одновременно двух металлических оснований щупов. Ваше тело может шунтировать измеряемую деталь, и показания пробора будут ложными.

Неисправный резистор труднее всего диагностировать. Он может быть как пробитым (короткое замыкание) так и с обрывом. Проблема в том, что если вы не знаете маркировку или у вас нет схемы, определить неисправную деталь будет труднее.

Пробитый резистор мультиметр определит как с 0 сопротивлением. А в режиме диодной прозвонки, мультиметр начнет пищать. Однако, если реальное сопротивление резистора было 1 Ом, то прибор может пищать, а в режиме измерения сопротивления будет показывать погрешности.

Тоже самое с резисторами, чьи номиналы сопротивления выше, чем у измеряемого прибора. Можно его проверить и с помощью диодной прозвонки. При исправном резисторе диодная прозвонка не будет пищать, она покажет падение напряжения. Но и тут проблема.

Чем заменить неисправный

Учитывайте цепь, в которой надо поменять деталь. Если SMD резистор, то подойдет только такой же +-5% от номинала. Если это DIP резистор, который стоит в блоке питания, то можно обойтись с большей погрешностью. Проблема в том, что некоторые схемы могут быть рассчитаны на большую погрешность, а схемы для точны приборов нет. SMD компоненты обладают меньшей емкостью и индуктивностью, чем DIP. И в тоже время, SMD не предназначены для высокой мощности.

Еще можно объединить разные резисторы в один нужный, для временного ремонта. Например, резистор мощностью 2 Вт и сопротивлением 10 кОм чернеет и перегревается. Чем можно его заменить? Можно соединить два резистора по 20 кОм 2 Вт параллельно, и получим эквивалентную мощность 4 Вт и сопротивление 10 кОм. А можно и последовательно соединить два по 5 кОм 2 Вт. И получится резистор 10 кОм 4 Вт.

Маркировка резисторов

Не нужно учить или зубрить маркировку. Она пригодится в тех ситуациях, когда на плате резистор сгорел или повредился, а данных о его сопротивлении нет.

DIP маркируются кольцами. У них есть множители и проценты погрешности.

SMD в виду своих габаритов маркируются цифрами.

Проверка конденсатора мультиметром

Для проверки работоспособности радиоэлементов существует несколько приемов и приборов. В частности, для измерения емкости и проверки состояния конденсаторов лучше всего подходит LC-метр. Однако в ситуациях, когда его нет под рукой, может выручить обычный мультиметр.

Содержание:

  1. Как он работает и зачем он нужен
  2. Подготовка перед проверкой
  3. Ход проверки
  4. Проверка на ёмкость
  5. Проверка вольтметром
  6. Проверка на короткое замыкание
  7. Проверка автомобильного конденсатора

Как работает конденсатор и зачем он нужен

Конденсатор – это пассивный электронный радиоэлемент. Его принцип действия схож с батарейкой – он аккумулирует в себе электрическую энергию, но при этом обладает очень быстрым циклом разрядки и зарядки. Более специализированное определение гласит, что конденсатор – это электронный компонент, применяемый для аккумуляции энергии или электрического заряда, состоящий из двух обкладок (проводников), разделенных между собой изолирующим материалом (диэлектриком).

Так каков принцип действия этого устройства? На одной пластинке (отрицательной) собирется избыток электронов, на другой — недостаток. А разница между их потенциалами будет называться напряжением. (Для строгого понимания нужно прочесть, например: И.Е. Тамм Основы теории электричества)

В зависимости от того, какой материал используется для обкладки, конденсаторы разделяют на:

  • твердотельные или сухие;
  • электролитические – жидкостные;
  • оксидно-металлические и оксидно-полупроводниковые.

По изолирующему материалу их делят на следующие виды:

  • бумажные;
  • плёночные;
  • комбинированные бумажно-плёночные;
  • тонкослойные;

Чаще всего необходимость проверки с использованием мультиметра возникает при работе с электролитическими конденсаторами.

Ёмкость конденсатора находится в обратной зависимости от расстояния между проводниками, и в прямой – от их площади. Чем они больше и ближе друг к другу – тем больше ёмкость. Для её измерения используется микрофарад (mF). Обкладки изготавливаются из алюминиевой фольги, скрученной в рулон. В качестве изолятора выступает слой окисла, нанесенный на одну из сторон. Для обеспечения наибольшей ёмкости устройства, между слоями фольги прокладывается очень тонкая, пропитанная электролитом, бумага. Бумажный или пленочный конденсатор, сделанный по данной технологии, хорош тем, что обкладки разделяет слой окисла в несколько молекул, благодаря чему и удается создавать объемные элементы с большой ёмкостью.

На сегодня конденсаторы используются практически в каждой электронной схеме. Их выход из строя чаще всего связан с истечением срока годности. Некоторым электролитическим растворам присуще «усыхание», в процессе которого уменьшается их ёмкость. Это сказывается на работе цепи и форме сигнала, проходящего по ней. Примечательно, что это характерно даже для неподключенных в схему элементов. Средний срок службы – 2 года. С этой периодичностью и рекомендуется проводить проверку всех установленных элементов.

Подготовка перед проверкой

В первую очередь следует выбрать инструмент для проведения проверки. Сегодня в широком ассортименте можно найти мультиметры с аналоговой стрелочной индикацией и жидкокристаллическим дисплеем. Последние отличает высокая точность измерений и удобство эксплуатации, однако для проверки конденсаторов многие предпочитают брать стрелочный мультиметр – легче и понятнее отследить плавное перемещение стрелки, чем «прыгающие» цифры.

Стоит упомянуть, что конденсатор пропускает переменный ток в обоих направлениях, а постоянный – в одном до полной зарядки. У мультиметра есть собственный источник питания, который, соответственно, обладает своей полярностью и номинальным напряжением. Эту особенность инструмента и используют для диагностики.

Для подготовки к проверке:

  • Переведите переключатель в рабочее положение для измерения сопротивления, чаще всего он обозначается аббревиатурой OHM или символом Ω. В некоторых источниках говорится, что удобнее поставить «на сигнал», однако это менее эффективно – этот способ позволит проверить элемент на пробой, без учета других причин неисправности.
  • Отградуируйте прибор с помощью механической регулировки, необходимо, что стрелка совпадала с крайней риской.
  • Снять заряд с конденсатора. Этот пункт обязателен даже для тех деталей, которые не были выпаяны из схемы – на выводах может оставаться остаточное напряжение. Для его снятия нужно замкнуть клеммы. Для небольших элементов подойдет любой проводящий предмет – отвертка, нож, пинцет и т.д. Для конденсаторов с большой ёмкостью, рассчитанные для работы в 220 В сети лучше воспользоваться пробником с одной лампой, 380 В – с несколькими последовательно подключенными. Соблюдайте предельную осторожность и не соединяйте выводы элемента друг с другом – даже пусковой конденсатор, применяемый в бытовой технике, может нанести сильный вред организму.

Ход проверки

Для начала следует провести внешний осмотр радиоэлемента, не выпаивая его из платы. О неисправности или выходе из строя могут говорить вздутие корпуса, изменение его окраски, признаки температурного воздействия (потемнение платы, дорожки отходят от поверхности и т.п.). Если электролитический раствор протекает наружу, снизу в месте крепления к плате должны остаться характерные подтеки. Для проверки фиксации на плате можно осторожно взять элемент и несильно покачать из стороны в сторону. Если одна из ножек оборвана, это сразу будет понятно по свободному ходу.

Кстати, надо заметить, современное элементы снабжены специальными щелями для безопасного выхода схемы из строя. Иначе взрыв мог бы сильно испортить всю плату.

Перед тем как проверить элемент мультиметром, следует определить его тип: полярный или неполярный. Электролитические относятся к первой категории – их припаивают к контактам на схеме с соблюдением полярности: плюс – к плюсу, минус – к минусу. Соответственно, и клеммы мультиметра следует подключать согласно данному правилу. Неполярный конденсатор устанавливается без учета этих особенностей. Он, как и бумажный или керамический конденсатор, можно присоединяться к прибору в любом направлении.

Закоротим выводы и попробуем прозвонить элемент тестером. Если прибор показывает минимальное сопротивление, конденсатор исправен и начал заряжаться постоянным током. Во время этого процесса показатель сопротивления будет расти до предельного значения или бесконечности. Поведение показателей имеет значение – стрелка аналогового тестера должна перемещаться медленно без скачков. О том, что работоспособность нарушена, говорят следующие факторы:

  • При подключении клемм, тестер сразу показывает бесконечность. Это говорит об обрыве в конденсаторе.
  • Мультиметр показывает на ноль и издает звуковой сигнал – значит произошло короткое замыкание или пробой.

В обоих случаях исправность элементов уже не восстановить и их следует выбросить.

Для того чтобы проверить, работает ли неполярный конденсатор, необходимо выбрать на мультиметре предел для измерения в мегаомах и прикоснуться контактами прибора к выводам – исправный элемент не показывает сопротивлния выше 2 мОм. Стоит помнить, что проверка элемента мультиметром на короткое замыкание, не поддерживается большинством современных приборов, если номинальный заряд радиоэлемента ниже 0,25 мкФ.

Проверка на ёмкость

Проверив сопротивление, мы лишь частично выполняем условия. Простая работоспособность элемента еще не говорит о том, что он работает правильно – в некоторых случаях очень важна точность в работе, к примеру, если проверяется конденсатор микроволновки или колебательного контура. Чтобы убедиться в том, что конденсатор накапливает и удерживает заряд, нужно проверить емкость.

Для этого нужно повернуть тумблер мультиметра на режим CX. Здесь стоит сказать, что проведение этой процедуры возможно лишь с помощью качественного цифрового прибора, но даже в таком случае точность измерений остается приблизительной. При использовании стрелочного инструмента стрелка после подключения начинает быстро отклоняться. В свою очередь это лишь косвенное доказательство исправности элемента, лишь подтверждающее то, что он набирает заряд. О том, как правильно подключать тестер к конденсатору в режиме ёмкости должно быть указано в инструкции пользователя. Не забывайте, что электролитический конденсатор необходимо присоединять, соблюдая полярность. Как правило, анодный (положительный) контакт несколько длиннее катодного (отрицательного).

Ниже размещено интересное радиолюбительское видео, где в середине проводится измерение емкости.

Предел измерения следует выбирать исходя из значения емкости, указанного на корпусе конденсатора. Так, к примеру, если номинальная емкость составляет 9,5 мкФ, необходимо измерять её, переведя тумблер на значение 20 µ. Если итоговые показатели измерений сильно отличаются от номинальных, значит радиодеталь неисправна.

Проверка вольтметром

Если под рукой не оказалось тестера, проверить работоспособность элемента можно с помощью другого электроизмерительного прибора – вольтметра.

  1. Рекомендуется, но не обязательно, отсоединять деталь от электрической цепи – можно проверить все и на плате, отсоединив только один контакт.
  2. Теперь нужно зарядить конденсатор под напряжением ниже номинала. К примеру, для 25V-ного конденсатора подойдет 9V, а для 600V-ного – 400V. Подсоедините прибор и дайте несколько секунд для зарядки. Во избежание порчи во время зарядки следует проверить полярность выводов и клемм. Время зарядки зависит от разности номинала и питающего напряжения. Так, высоковольтный конденсатор можно зарядить только с помощью мощного прибора, превышающего эту величину.
  3. Через некоторое время конденсатор необходимо подключить к вольтметру и замерить напряжение. Для определения исправности надо зафиксировать начальный показатель – если он приблизительно равен или чуть ниже номинала, то элемент исправен. Значительно меньшее напряжение говорит о том, что конденсатор быстро теряет заряд и уже не может выполнять свою задачу (в среднем обычный конденсатор должен удерживать номинальный заряд на протяжении не менее получаса). После подключения через вольтметр радиоэлемент начнет разряжаться, поэтому важно записать напряжение, показанное сразу после подключения.

Проверка на короткое замыкание

Обратите внимание, что данный способ относительно небезопасен и не рекомендуется его использование людьми без необходимого опыта и знаний.

  1. Для начала следует отсоединить конденсатор от схемы и ненадолго (до 4 сек) подключить к источнику питания.
  2. Отсоединив от источника питания, замкните выводы конденсатора с помощью электропроводящего инструмента (отвертка, пинцет, нож). Будьте осторожны: используйте для этого только заизолированный предмет или наденьте на руки резиновые перчатки.
  3. При замыкании выводов произойдет короткое замыкание, сопровождающееся вылетом искры, по виду которой и можно судить о состоянии элемента: если проскочила сильная и яркая искра, конденсатор в норме, тусклая и слабая искра говорит о неисправности.

А вот это видео мы настоятельно рекомендуем посмотреть, т.к. оно очень подробное и охватывает все аспекты нашей темы:

Проверка конденсатора на плате (не выпаивая)

На самом деле, механизм аналогичен, поэтому просто рекомендуем посмотреть это видео, оно должно закрыть все оставшиеся вопросы.

Проверка автомобильного конденсатора

В системах зажигания большинства современных автомобилей используется электронный коммутатор (по привычке называемый так же, как предшествующий ему механический прибор), распределяющий зажигание на свечи, которые, в свою очередь, подают искры на цилиндры двигателя. Считается, что поломка этого устройства требует его немедленной полной замены, однако, если причина неисправности в конденсаторе, используемом в конструкции, можно попробовать поменять только его. Для проверки на трамблере используется амперметр.

  1. Подключив амперметр к выводам конденсатора, включите зажигание и разомкните их.
  2. Обратите внимание на показатели амперметра – если стрелка сместилась с 2-4 А до нуля, наш элемент вышел из строя и надо его заменить.

Самостоятельно проверить автомобильный конденсатор можно и без специального оборудования. Для этого нужно подключить к контактам переносную лампочку небольшой мощности. Если радиоэлемент в порядке, то она не загорится после включения зажигания.

0 0 голоса
Рейтинг статьи
Ссылка на основную публикацию