0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Почему турбину называют турбокомпрессор

Почему турбину называют турбокомпрессор

Турбина в автомобиле. Что это такое, как устроено и принцип работы

Турбокомпрессор – непростая и интересная деталь в автомобиле. У человека, который не сталкивался с турбосистемами, но имеет долю любопытства и пытливый ум, агрегат порождает множество различных вопросов. Ответы, да и сами возникающие вопросы достаточно любопытны.

Например, вопрос следующего характера: почему специалисты называют устройство таким чудным словом – турбокомпрессор? Это вопрос, достойный внимания. Правильный ответ на данный вопрос может казаться бредовым, но только в начале. Установка, в обиходе зовущаяся турбиной, как таковой ею не является. По своей сути это компрессор, который нагнетает смесь газов в камеры сгорания под давлением.

Правильное название турбины – турбокомпрессор (от английского – turbocharger, что в дословном переводе значит турбонагнетатель).

Знакомство с устройством и работой турбонагнетателя

Установка состоит из 2 модулей – турбины и компрессора. В соответствии с основами русского языка главной частью является «компрессор», а «турбина» указывает на какую-либо особенность главного элемента. Но это с точки зрения филологии. В техническом плане приставка «турбо» говорит о том, что главный узел выполняет свою работу благодаря вспомогательному. Узел состоит из двух элементов, соединенных общим валом, – нагнетателя и турбины. В центральном корпусе турбокомпрессора на линии оси вала установлены подшипники, на которых вращается вал.

Нагнетатель выполняет главную работу, которая возложена на турбосистему – подает воздух под высоким давлением, тем самым повышая массу воздушной смеси, подаваемой в силовую установку при других постоянных характеристиках (объем мотора, частота вращения коленчатого вала и прочие). Энергию, требующуюся для совершения работы нагнетателя, производит вспомогательный модуль. Раскручивается он «дармовыми» газами, которые образуются в результате сгорания горючей смеси в камерах сгорания. Получившийся крутящий момент в дальнейшем передается на устройство нагнетания воздушной смеси в мотор.

Выражаясь фигурально, турбокомпрессор – это сказочное существо «тяни-толкай». Турбина – «тяни», компрессор – «толкай». Несмотря на то, что турбина и нагнетатель представляют собой единую установку, они имеют ряд противоположностей (турбина – горячая, а нагнетатель – холодный). Вспомогательный элемент работает по принципу центростремительной, а основной – по принципу центробежной системы. Помимо соединяющего общего вала, оба модуля относятся к лопаточным машинам. В этом заключена вся «техническая правда» об этом агрегате.

Итоги знакомства с турбонагнетателем

На основании приведенной выше информации фраза «турбина не дует», которую очень часто можно услышать в разговоре огорченного автолюбителя или слабо подкованного автослесаря, имеет смысл исключительно на сленге, а под турбиной имеется в виду вся установка – турбонагнетатель.

Отремонтируйте Вашу турбину у НАС

С точки зрения технически образованного специалиста это словосочетание не имеет смысла. Второстепенный узел являет собой привод компрессора, который, раскручиваясь за счет отработавших газов, передает на главную часть крутящий момент, тем самым приводя его в действие. Поэтому она «дуть» и не должна, ее миссия – «крутить».

Если вдаваться в нюансы, то следует уточнить, что силовые агрегаты автомобилей оснащены не турбонагнетателями, а системами турбонаддува. В ее состав кроме агрегата, входят датчики, патрубки, устройства регулирования и другие элементы.

Дочитав статью до конца, вы повысили свою грамотность относительно турбосистем автомобиля и в будущем не попадете впросак, используя народный сленг.

Принцип работы турбокомпрессора

Смотрите видеоролики и анимационные фильмы на канале YouTube Cummins Turbo Technologies, в которых показано, как работает турбонагнетатель.

Важные моменты работы дизельных двигателей

Основное предназначение двигателя – сжигание топливовоздушной смеси с последующим преобразованием полученного тепла в механическую энергию. Механическая энергия используется для совершения возвратно-поступательного движения поршней, которое, в свою очередь, преобразуется во вращательное движение колес автомобиля. Чем больше получено механической энергии, тем выше мощность. Одно из важных отличий дизельных двигателей с турбонаддувом от традиционных безнаддувных двигателей заключается в том, что воздух в дизельном двигателе находится в сжатом состоянии еще до подачи топлива. Именно поэтому турбонагнетатель так важен для обеспечения выходной мощности и КПД дизельного двигателя. Сжимать воздух, поступающий в цилиндры двигателя, – работа турбонагнетателя. После сжатия воздуха молекулы кислорода располагаются компактнее. Это означает, что по сравнению с безнаддувным двигателем, в двигатель с турбонаддувом того же объема можно впрыскивать больше топлива, что приводит к повышению механической мощности и общего КПД двигателя. Поэтому при заданной мощности двигателя габариты двигателя с турбонаддувом меньше, чем у безнаддувного двигателя. Это способствует применению более компактной конструкции, снижению веса и общему повышению топливной экономичности. Хотя концепция турбонаддува относительно проста, турбонагнетатель играет важную роль в работе дизельного двигателя, поэтому для него требуются высокотехнологичные узлы и детали. Благодаря нашему богатому опыту в области технологий турбонаддува и знанию двигателей, мы производим и выпускаем турбонагнетатели мирового уровня, известные своей долговечностью, высоким уровнем безопасности и надежностью, которые необходимы для современных двигателей.

Принцип работы турбонагнетателя

Турбонагнетатель состоит из двух основных частей: турбины и компрессора. Турбина состоит из рабочего колеса (1) и корпуса (2). Среди прочего, назначение корпуса турбины – направлять отработавшие газы (3) на рабочее колесо турбины. Отработавшие газы приводят во вращение рабочее колесо, после чего покидают корпус турбины через зону выхода отработавших газов (4).

(1) Рабочее колесо турбины
(2) Корпус турбины
(3) Отработавшие газы
(4) Зона выхода отработавших газов
(5) Рабочее колесо компрессора
(6) Корпус компрессора
(7) Кованый стальной вал
(8) Сжатый воздух

Компрессор состоит из двух частей: рабочего колеса (5) и корпуса (6). Принцип работы компрессора противоположен принципу работы турбины. Рабочее колесо компрессора соединено с турбиной кованым стальным валом (7) и при вращении турбины на высоких оборотах захватывает и сжимает воздух. Затем в ходе процесса под названием «диффузия» в корпусе компрессора поток воздуха, имеющий низкое давление и высокую скорость, преобразуется в поток воздуха с высоким давлением и низкой скоростью. После этого сжатый воздух (8) подается в двигатель, что позволяет сжигать в двигателе больше топлива и вырабатывать больше мощности.

Турбина

Турбина — ротационный двигатель с непрерывным рабочим процессом и вращательным движением рабочего органа

Турбина — ротационный двигатель с непрерывным рабочим процессом и вращательным движением рабочего органа (ротора), преобразующий кинетическую энергию и/или внутреннюю энергию рабочего тела (пара, газа, воды) в механическую работу.
Струя рабочего тела воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение.
Применяется в качестве привода электрического генератора на тепловых, атомных и гидро электростанциях, как составная часть приводов на морском, наземном и воздушном транспорте, а также гидродинамической передачи, гидронасосах.

Состав турбины

Турбина состоит из 2-х основных частей.
Ротор с лопатками — подвижная часть турбины.
Статор с выравнивающим аппаратом — неподвижная часть.

Виды турбин

По направлению движения потока рабочего тела различают аксиальные паровые турбины, у которых поток рабочего тела движется вдоль оси турбины, и радиальные, направление потока рабочего тела в которых перпендикулярно оси вала турбины.

Центробежные турбины (турбокомпрессоры) также выделяют как отдельный тип турбин.

По числу контуров турбины подразделяют на 1-контурные, 2-контурные и 3-контурные.
Очень редко турбины могут иметь 4 или 5 контуров.

Многоконтурная турбина позволяет использовать большие тепловые перепады энтальпии, разместив большое число ступеней разного давления.

По числу валов различают 1-вальные, 2-вальные, реже 3-вальные, связанных общностью теплового процесса или общей зубчатой передачей (редуктором).

Расположение валов может быть как коаксиальным так и параллельным с независимым расположением осей валов.
В местах прохода вала сквозь стенки корпуса установлены концевые уплотнения для предупреждения утечек рабочего тела наружу и засасывания воздуха в корпус.
На переднем конце вала устанавливается предельный регулятор (регулятор безопасности), автоматически останавливающий (замедляющий) турбину при увеличении частоты вращения на 10-12 % сверх номинальной.

По типу рабочего тела турбины делятся на Газовые турбины, Паровые турбины и Гидротурбины.

Устройство турбины

Для того чтобы увидеть внутреннее устройство турбины, при ее изображении «вырезана» передняя верхняя четверть. Точно также показана лишь задняя часть кожуха 2. Турбина состоит из трех цилиндров (ЦВД, ЦСД и ЦНД), нижние половины корпусов которых обозначены соответственно 39, 24 и18. Каждый из цилиндров состоит из статора, главным элементом которого являются неподвижный корпус, и вращающегося ротора. Отдельные роторы цилиндров (ротор ЦВД 47, ротор ЦСД 5 и ротор ЦНД 11) жестко соединяются муфтами 31 и 21. К полумуфте 12 присоединяется полумуфта ротора электрогенератора (не показан), а к нему — ротор возбудителя. Цепочка из собранных отдельных роторов цилиндров, генератора и возбудителя называется валопроводом. Его длина при большом числе цилиндров (а самое большое их число в современных турбинах — 5) может достигать 80 м.

Валопровод вращается во вкладышах 42, 29, 23, 20 и т.д. опорных подшипников скольжения на тонкой масляной пленке и не касается металлической части вкладышей подшипников. Как правило, каждый из роторов размещают на двух опорных подшипниках. Иногда между роторами ЦВД и ЦСД устанавливают только один общий для них опорный подшипник (см. позицию 29 на рис. 6.1). Расширяющийся в турбине пар заставляет вращаться каждый из роторов, возникающие на них мощности складываются и достигают на полумуфте 12 максимального значения.

К каждому из роторов приложено осевое усилие. Они суммируются, и их результирующая осевая сила передается с гребня 30 на упорные сегменты, установленные в корпусе упорного подшипника.

Каждый из роторов помещают в корпус цилиндра (см., например, поз. 24). При больших давлениях (а в современных турбинах оно может дос­тигать 30 МПа 300 ат) корпус цилиндра (обычно ЦВД) выполняют двухстенным (из внутреннего 35 и внешнего 46 корпусов). Это уменьшает разность давлений на каждый из корпусов, позволяет сделать его стенки более тонкими, облегчает затяжку фланцевых соединений и позволяет турбине при необходимости быстро изменять свою мощность.

Все корпуса в обязательном порядке имеют горизонтальные разъемы 13, необходимые для установки роторов внутри цилиндров при монтаже, а также для легкого доступа внутрь цилиндров при ревизиях и ремонтах. При монтаже турбины все плоскости разъемов нижних половин корпусов устанавливают специальным образом (для простоты можно считать, что все плоскости разъема совмещают в одной горизонтальной плоскости). При последующем монтаже ось валопровода помещают в эту плоскость разъема, что обеспечивает центровку — ось валопровода будет точно совпадать с осью кольцевых расточек корпусов. Этим будут исключены задевания ротора о статор, которые могут привести к тяжелой аварии.

Пар внутри турбины имеет высокую температуру, а ротор вращается во вкладышах на масляной пленке, температура масла которой как по соображениям пожаробезопасности, так и необходимости иметь определенные смазочные свойства, не должна превышать 100 °С (а температура подаваемого и отводимого масла должна быть еще ниже). Поэтому вкладыши подшипников выносят из корпусов цилиндров и размещают их в специальных строениях — опорах (см. поз. 45, 28, 7 на рис. 6.1). Таким образом, вращающиеся концы каждого из роторов соответствующего цилиндра необходимо вывести из невращающегося статора, причем так, чтобы с одной стороны исключить какие-либо (даже малейшие) задевания ротора о статор, а с другой — не допустить значительную утечку пара из цилиндра в зазор между ротором и статором, так как это снижает мощность и экономичность турбины. Поэтому каждый из цилиндров снабжают концевыми уплотнениями (см. поз. 40, 32, 19) специальной конструкции.

Турбина устанавливается в главном корпусе ТЭС на верхней фундаментной плите 36 (см. рис. 2.6). В плите выполняются прямоугольные окна по числу цилиндров, в которых размещаются нижние части корпусов цилиндров, а также осуществляется вывод трубопроводов, питающих регенеративные подогреватели, паропроводы свежего и вторично перегретого пара, переходный патрубок к конденсатору.

После изготовления турбина проходит контрольную сборку и опробование на заводе-изготовителе. После этого ее разбирают на более-менее крупные блоки, доводят до хорошего товарного вида, консервируют, упаковывают в деревянные ящики и отправляют для монтажа на ТЭС.

Монтаж турбины

Монтаж турбины осуществляют в следующем порядке. Сначала устанавливают нижнюю половину ЦНД 18 опорным поясом 15, расположенным по периметру обоих выходных патрубков ЦНД. ЦНД имеет собственные вваренные в них опоры ротора. Затем на перемычке между окнами под ЦВД и ЦСД и слева от окна под ЦВД размещают нижние половины корпусов опор соответственно 28 и 41. После этого на опоры подвешивают нижние половины корпусов наружных цилиндров 39 и 24, в них помещают статорные элементы и осуществляют центровку всех цилиндров турбины.

В опоры ротора вставляются нижние половины опорных вкладышей 42, 29, 23, 20 и 16, и на них опускают отдельные роторы. Их строго прицентровывают друг к другу и соединяют с помощью муфт 31 и 21.

Затем в верхние половины корпусов помещают необходимые внутренние статорные элементы и турбину закрывают. Для этого в отверстия на горизонтальные разъемы корпусов ввинчивают шпильки и опускают верхние половины (крышки — см., например, поз. 46 на рис. 6.1), после чего с помощью шпилек и специальных приспособлений верхние и нижние половины корпусов плотно стягиваются по фланцевым разъемам.

Аналогичным образом закрываются опоры роторов. После изоляции турбины, ограждения кожухом и многочисленных проверок ее доводят для состояния, пригодного к несению нагрузки.

При работе турбины пар из котла (см. рис. 2.2) по одному или нескольким паропроводам (это зависит от мощности турбины) поступает сначала к главной паровой задвижке, затем к стопорному (одному или нескольким) и, наконец, к регулирующим клапанам (чаще всего — 4). От регулирующих клапанов (на рис. 6.1 не показаны) пар по перепускным трубам 1 (на рис. 6.1 их четыре: две из них присоединены к крышке 46 внешнего корпуса ЦВД, а две других подводят пар в нижние половины корпуса) подается в паровпускную камеру 33 внутреннего корпуса ЦВД. Из этой полости пар попадает в проточную часть турбины и, расширяясь, движется к выходной камере ЦВД 38. В этой камере в нижней половине корпуса ЦВД имеются два выходных патрубка 37. К ним приварены паропроводы, направляющие пар в котел для промежуточного перегрева.

Вторично перегретый пар по трубопроводам поступает через стопорный клапан (не показан на рис. 6.1) к регулирующим клапанам 4, а из них — в паровпускную полость ЦСД 26. Далее пар расширяется в проточной части ЦСД и поступает в его выходной патрубок 22, а из него — в две перепускные трубы 6 (иногда их называют ресиверными), которые подают пар в паровпускную камеру ЦНД 9. В отличие от однопоточных ЦВД и ЦСД, ЦНД почти всегда выполняют двухпоточными: попав в камеру 9, пар расходится на два одинаковых потока и, пройдя их, поступает в выходные патрубки ЦНД 14. Из них пар направляется вниз в конденсатор. Перед передней опорой 41 располагается блок регулирования и управления турбиной 44. Его механизм управления 43 позволяет пускать, нагружать, разгружать и останавливать турбину.

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Турбонагнетатель. Устройство и принцип работы

Турбонагнетатель. Устройство и принцип работы

Что такое турбонагнетатель или турбокомпрессор? Фактически это компрессор, призванный нагнетать воздух, но его привод осуществляется не от коленчатого вала через ременную передачу, а используя энергию потока отработавших газов.

В данной статье рассмотрим устройство и принцип работы турбонагнетателей.

Принцип работы турбонагнетателя

Работа турбонагнетателя предельно проста. Выхлопные газы, проходя в турбину, приводят во вращение ротор. Колесо центробежного компрессора жестко закреплено на оси ротора и вращается с той же скоростью.

Чем большей энергией обладают выхлопные газы, тем быстрее вращаются колеса турбины и, соответственно, компрессоры. Чем больше воздуха подается в цилиндры, тем больше топлива может сгореть, тем выше мощность. При этом частота вращения турбокомпрессора может быть очень и очень высокой – 150 тыс. об/мин.

Большинство турбонагнетателей имеют механизм изменения геометрии турбины. Дополнительное кольцо с управляемыми направляющими лопатками позволяет поддерживать поток выхлопных газов не только постоянным, но и управлять им. Так, на низких оборотах, когда поток невелик, поперечное сечение турбины уменьшается, что увеличивает скорость газов, поступающих на колесо, повышая ее мощность. На высоких же оборотах лопасти полностью открывают вход газам, увеличивая пропускную способность турбины.

Такое гибкое управление позволяет не только расширить диапазон эффективной работы турбонагнетателя, но и существенно снизить потребление топлива и вредные выбросы. Турбонагнетатель с изменяемой геометрией турбины обеспечивает эффективную работу не только на высоких, но и на низких оборотах двигателя.

Плюсы и минусы турбонагнетателей

Преимущество в том, что, в отличие от механических нагнетателей, приводимых от коленчатого вала и отнимающих мощность непосредственно у двигателя, турбонагнетатели используют фактически дармовую энергию, которая в обычном двигателе попросту выбрасывается из выхлопной трубы. Это делает турбонагнетатели более эффективными, нежели механические.

Одновременно турбонаддув позволяет получить высокие мощности – свыше 300 л. с. с одного литра объема. Двигатель с турбонагнетателем имеет мощность на 40% выше, чем без него. Как ни странно, но турбированные двигатели более экономичны. Низкое КПД двигателя внутреннего сгорание обусловливается потерями на трение и низкой тепловой эффективностью. С увеличением размеров мотора эти потери резко увеличиваются. Небольшие турбированные моторы в этой связи более предпочтительны.

Турбонагнетатели несовершенны и обладают рядом проблемных мест. Самое заметное – эффект «турбоямы». Отсутствие механической связи между компрессором и двигателем приводит к несоответствию между требуемой мощностью, задаваемой водителем педалью ‘газа’ и производительностью компрессора.

Недостатком турбокомпрессоров считается невысокая эффективность работы на малых оборотах двигателя. Но и эта проблема находит свои решения. Турбины с переменной геометрией, установка двух и более турбин, работающих параллельно (системы bi-turbo), позволяют повысить отдачу системы.

Турбокомпрессоры имеют те же недостатки, что и центробежные нагнетатели. Для эффективной работы они должны вращаться с очень высокой скоростью. Плюс высокий нагрев (порядка 1000 °С), сложности в смазке, отводе тепла. Повышенные температуры сказываются не только на смазке деталей турбонагнетателя, но и на нагнетаемом воздухе: его охлаждение оказывается острым вопросом. Для эффективного охлаждения интеркулер рассчитывается и подбирается с особой тщательностью.

Как и в любом нагнетательном устройстве, в турбонагнетателе необходим клапан, спускающий излишнее давление. С турбиной еще сложнее. Здесь нужно не только следить за давлением наддува, но и перепускать выхлопные газы, чтобы снизить избыток давления в выпускном коллекторе, и исключить чрезмерно высокую скорость вращения ротора на высоких оборотах двигателя.

Нужно сказать, что после работы на повышенных оборотах турбина должна «отдохнуть» на холостых оборотах. Поработав так несколько минут, турбина остывает, и ее можно остановить. Устройство, именуемое турботаймером, позволяет при выключении зажигания глушить двигатель через время, которое можно запрограммировать, либо оно определяется автоматически, исходя из температуры мотора. В отсутствие такого прибора водитель должен обеспечить «режим остывания» самостоятельно.

Механические нагнетатели или турбонагнетатели?

Сравнивая нагнетатели с механическим приводом и турбоприводом, надо отметить один факт. Массовое производство позволяет автомобильной промышленности существенно снижать себестоимость моторов с турбонагнетателями. Использование же в тюнинге сопряжено с немалыми трудностями, прежде всего в установке.

Аналогичные центробежные механические нагнетатели более удобны и просты в установке и в эксплуатации. Однако достоинства турбонагнетателей приводят к тому, что их чаще используют при тюнинге двигателя. Существуют готовые комплекты для различных авто.

В заключение следует сказать: турбонагнетатели несомненно интересны, не зря большинство спортивных машин оснащаются турбинами. Высокий КПД и прочие положительные факторы делают их привлекательными как для обычных автомобилей, так и для тюнинга.

Газовая турбина Siemens пока не смогла получить статус российской

Минпромторг не одобрил заявление «Сименс технологии газовых турбин» (СТГТ; 65% принадлежит Siemens, 35% – «Силовым машинам» Алексея Мордашова) на заключение специального инвестиционного контракта (спик) на локализацию газовой турбины большой мощности. Заявление возвращено компании на доработку до того момента, когда правительство утвердит перечень современных технологий, по которым могут заключаться такие контракты, сообщил «Ведомостям» представитель Минпромторга.

Компания подала заявление на инвестконтракт 2 июля. Он должен позволить газовым турбинам СТГТ получить статус «Сделано в России», а предприятию – статус российского производителя. За это компания обязуется к середине 2023 г. довести локализацию турбины SGT5-2000E до 90%, включая компоненты «горячего тракта» (лопатки, газораспределитель и камеры сгорания). Однако 2 августа президент одобрил поправки в закон «О промышленной политике», меняющие механизм спика. Его основная задача сместилась с привлечения инвестиций на разработку и внедрение передовых технологий, перечень которых будет утверждаться правительством, рассказал представитель Минпромторга. После утверждения перечня СТГТ рекомендовали оценить соответствие проекта новому механизму.

Siemens известно об этих изменениях, сказал представитель компании: «Пока мы не получили официального ответа от Минпромторга по нашему заявлению. На текущий момент все ранее озвученные планы остаются в силе».

Предприятия могут направлять собственные предложения, какие технологии должны войти в этот перечень. «Производство больших газовых турбин точно войдет в список, поскольку эта технология нужна России», – считает человек в крупной энергостроительной компании.

СТГТ – единственный производитель больших газовых турбин в России. SGT5-2000E локализована на 62%. В декабре 2018 г. президент Siemens в России, Белоруссии и Центральной Азии Александр Либеров сообщал, что можно локализовать ее на 100% к концу 2024 г. В конце июля правительство ограничило возможность компаний с иностранным капиталом более 50% получить статус российской для больших газовых турбин.

14 млрд руб.

стоит, по оценкам правительства, создание в России собственного производства двух линеек газовых турбин мощностью в диапазоне 60–80 и 150–180 МВт. Половину готов выделить бюджет

Без этого нельзя использовать турбину на проектах модернизации ТЭС по договорам предоставления мощности (ДПМ; гарантируют доходность инвестиций через повышенные платежи потребителей). По этой программе в 2022–2031 гг. планируют обновить 41 ГВт мощностей на 1,9 трлн руб.

Если Siemens хочет участвовать в программе модернизации, ему придется пожертвовать контролем в СТГТ, считает директор Фонда энергетического развития Сергей Пикин: «Скорее всего, им придется заручиться поддержкой крупного игрока, который имеет возможность лоббировать интересы компании».

Правительство ограничило иностранцам доступ на рынок больших газовых турбин

О необходимости создания российской турбины заговорили после того, как четыре турбины SGT5-2000Е, изготовленные по заказу «Технопромэкспорта» (принадлежит «Ростеху») для поставки на электростанции в Тамани, были изменены и установлены на Балаклавскую и Таврическую ТЭС в Крыму. Siemens выступил против поставок своего оборудования на полуостров из-за санкций Евросоюза, пытался признать договоры на поставку турбин недействительными и требовал вернуть оборудование. Суды эти жалобы не удовлетворили.

В марте 2019 г. правительство сообщило, что готово выделить на производство турбин 7 млрд руб. при условии, что инвестор вложит такую же сумму и до конца 2032 г. произведет не менее 22 турбин мощностью в диапазоне 60–80 и 150–180 МВт. Право на получение средств будет разыграно на конкурсе в течение 2019 г. О намерениях разработать отечественную турбину говорят в «Силовых машинах», «Интер РАО», «Ростехе» и «Газпром энергохолдинге». Это происходит на фоне мирового снижения рынка энергетического оборудования. За последние годы спрос на газовое энергооборудование на мировом рынке снизился на 40%, цены на него – на 30%, заявил в феврале 2018 г. президент немецкого концерна Джо Кайзер. Этим он объяснил необходимость сократить в течение 2–5 лет 3000 рабочих мест на заводах по производству энергетических турбин. Компания заявляла о намерении закрывать заводы в Германии. Российский рынок остается перспективным благодаря программе ДПМ, считает Пикин: «Если турбина будет локализована, при наличии лоббистского ресурса ей будет обеспечен спрос».

Представитель «Силовых машин» отказался от комментариев.

Суррогаты: чем опасны неоригинальные турбины

Турбокомпрессор — высокотехнологичный и ответственный узел. К сожалению, большинство сервисменов и рядовых автовладельцев этого по-прежнему не понимают и относятся к нему слишком пренебрежительно. В погоне за экономией люди готовы покупать китайские копии, которые в разы дешевле оригинальной детали. Такая политика еще может быть оправдана при осознанном подборе кузовных элементов или той же оптики, но никак не турбин.

Игроки на рынке заменителей

Как и в случае с другими запчастями, на рынке есть адекватные производители турбин-аналогов. Нельзя грести всех под одну гребенку, но важно понимать, что качественная копия не может стоить в разы меньше оригинала.

крыльчатка турбокомпрессора

Сложная и технологичная конструкция турбокомпрессора подразумевает и особую производственную цепочку. Здесь важную роль играет сырье, качество литья и выходной контроль каждой готовой турбины. В отличие от многих других узлов, картридж турбокомпрессора (вал с крыльчатками в составе корпуса подшипников) требует обязательной балансировки, а турбина в сборе — настройки механизма регулировки давления наддува. Чтобы на выходе получить удешевление продукта в разы, приходится экономить чуть ли не на каждом пункте. То есть это будет суррогат, который, возможно, неработоспособен изначально.

ремонт турбокомпрессора

Среди производителей, делающих качественные копии, хорошо себя зарекомендовала, например, китайская компания Jrone. У нее есть вся необходимая технологическая база, чтобы делать продукт, максимально повторяющий оригинал. Кроме турбин в сборе она также производит и их комплектующие, которые активно используют на ремонтном рынке. На свои турбокомпрессоры компания дает полноценную годовую гарантию.

Для понимания, такая китайская копия турбины стоит на 20–30% меньше оригинальной. На эти цифры и следует ориентироваться при подборе аналогов любого производителя. Если турбина существенно дешевле, значит при ее производстве сильно экономили со всеми вытекающими.

Лишние телодвижения

Производители некачественных турбин экономят на всем: сырье; качество литья и обработки; балансировка картриджа и настройка механизма регулировки давления наддува. Каждый из этих пунктов находит свое отражение в результатах реальных экспертиз неисправных турбин.

крыльчатка турбокомпрессора

Качество сырья играет крайне важную роль. К примеру, корпусные детали горячей части ТК делают из жаропрочного чугуна, легированного никелем, хромом или молибденом. Сплав турбинного колеса должен содержать около 70–80% дорогостоящего никеля. Компрессорные крыльчатки изготавливают из более дешевых алюминиевых сплавов, но и здесь есть поле для экономии. Суррогатное сырье приводит к фатальным разрушениям крыльчаток и дефектам корпусов турбин.

ремонт турбокомпрессора

Обязательную балансировку картриджа турбокомпрессора проводят на дорогостоящем оборудовании, которое практически повторяет условия работы узла в составе двигателя. Ротор раскручивают вплоть до номинальных оборотов, а в корпус подшипников подводят горячее моторное масло под давлением. В ходе этой процедуры решают массу задач: правильность сборки картриджа; надежность газодинамических уплотнений вала; обкатка турбины; проверка герметичности соединений. Величина допустимого остаточного дисбаланса играет решающую роль. За пределами этой величины ускоряется износ подшипников и уплотнений, что заметно сокращает ресурс турбины.

ремонт турбокомпрессора

Вскрытие показало

Результаты экспертиз отказавших турбин красноречиво свидетельствуют о последствиях экономии при производстве. Наиболее часто встречающиеся дефекты подробно описаны на примерах нескольких реальных осмотров.

Вскрытие неоригинального турбокомпрессора Garrett

ремонт турбокомпрессора

Ряд турбин имеют мокрые корпуса подшипников. В них сделана рубашка охлаждения, через которую прокачивается антифриз из системы охлаждения двигателя. Производители оригинальных турбин проверяют ее герметичность методом опрессовки. Дешевые копии такой проверке не подвергаются вовсе.

ремонт турбокомпрессора

При первичном демонтаже корпусов копии турбины Garrett в компрессорной части обнаружили масло. Дальнейший разбор выявил смесь масла и антифриза в картридже.

ремонт турбокомпрессора

Оказалось, что корпус подшипников имеет технологический брак литья — раковину, соединяющую рубашку охлаждения с внутренней полостью картриджа. В результате антифриз попадал и в систему смазки двигателя. Такой турбокомпрессор уже неработоспособен. Ремонт в этом случае влетит в копеечку, придется менять картридж в сборе. Хорошо еще, что турбина проработала недолго, иначе последствия разбавления моторного масла антифризом оказались бы куда более серьезными как для турбокомпрессора, так и для двигателя.

Распространенные дефекты при обработке и производстве деталей

Хватает и примеров экономии, казалось бы, на мелочах — на качестве изготовления и обработке деталей фиксации.

турбонаддув

К примеру, экономия на производстве стопорных колец для подшипников турбины резко сокращает ресурс узла в целом. Банальные острые заусенцы по краям проделанных в них отверстий приводят к плачевным итогам: вместо того чтобы фиксировать подшипники, кольца протачивают их.

турбонаддув

турбонаддув

Неоригинальный турбокомпрессор Cummins/Holset

Продолжение темы про некачественную обработку деталей. На столе у экспертов — турбина с повышенным люфтом вала и повреждениями крыльчаток.

турбонаддув

Разбор турбины выявил присутствие частиц металла в масляных каналах, глубокие кольцевые канавки на шейках вала, износ поверхностей опорных подшипников и трещины на одном из них. Вдобавок обнаружено разрушение упорного подшипника и уплотнительных колец картриджа.

турбонаддув

турбонаддув

Такой сильный абразивный износ деталей подшипникового узла посторонними частицами металла вызвали всего лишь заусенцы на масляных каналах, которые нерадивый изготовитель поленился убрать.

турбонаддув

турбонаддув

Неоригинальный турбокомпрессор Garrett

турбонаддув

Очень часто на экспертизу приходят турбины с неправильной настройкой механизма регулировки давления наддува. Теневые изготовители либо делают эту процедуру некорректно, либо вообще ее не производят. Обычно это приводит к появлению ошибок в блоке управления мотором по системе наддува и даже переходу двигателя в аварийный режим.

В случае турбин с регулируемым сопловым аппаратом (РСА) игнорирование его настройки особенно опасно как для самого турбокомпрессора, так и для двигателя.

турбонаддув

Вскрыв подобную турбину, эксперты обнаружили неправильную настройку камеры управления РСА. Лопатки системы были полностью сомкнуты, и отработавшие газы вообще не могли проходить дальше. В результате пуск двигателя был попросту невозможен.

Вдобавок на этой турбине обнаружились и другие распространенные проблемы дешевых копий. Между центральным корпусом турбины и улитками не было обязательных уплотнительных колец. Либо их забыли поставить, либо даже не думали этого делать.

Ну и классика жанра — слишком высокий дисбаланс вала турбины. Из-за него идет повышенный износ подшипников, и ресурс турбокомпрессора резко сокращается.

турбонаддув

турбонаддув

Покупка откровенно дешевых аналогов оригинальных турбин на деле только увеличивает расходы владельца. Очень часто такие заменители неработоспособны изначально. Учитывая стоимость копии, а также ремонт для приведения ее в чувство, на выходе получаем сумму, которой с лихвой бы хватило на покупку и установку оригинального узла. Вместе с ним владелец получает гарантию от производителя с мировым именем и уверенность в качестве и длительном ресурсе продукта.

Власти США арестовали россиян за попытку поставить оборудование «Газпром нефти»

Недавний арест властями США пятерых человек, в том числе двоих россиян, за попытку поставки американского оборудования в обход санкций связан с платформой «Приразломная» «Газпром нефти». Именно на этот объект планировалось поставить силовую турбину Vectra 40G производства американской Dresser-Rand, следует из судебных документов и подтверждают источники “Ъ”. Разгоревшийся скандал еще больше затруднит для российских подсанкционных компаний закупку нефтегазового оборудования.

Силовая турбина Vectra 40G Dresser-Rand (американский производитель нефтегазового оборудования, принадлежит Siemens), попытка поставки которой в РФ спровоцировала расследование прокуратуры США, предназначалась для платформы «Приразломная» «Газпром нефти», утверждают собеседники “Ъ”. Это также подтверждается опубликованными судебными документами.

В 2014 году «Газпром нефть» попала под санкции США и ЕС, запрещающие поставки технологий и услуг для глубоководных, морских арктических и сланцевых проектов в РФ. Эти меры ограничивают поставку или реэкспорт товаров, услуг (кроме финансовых) и технологий для шельфа и сланцевой нефти.

3 декабря стало известно, что американские власти обвинили пятерых человек, в том числе двоих россиян, в нарушении санкционного режима и попытке мошенничества и отмывания денег. Обвинения предъявили российской компании «КС Инжиниринг», ее владельцу Олегу Никитину и сотруднику Антону Черемухину. Кроме того, обвинения предъявлены владельцу и президенту компании World Mining and Oil Supply Дали Багру, коммерческому директору GVA International Oil and Gas Services Габриэлю Виллону, а также Бруно Капарини, который является менеджером итальянской инженерной фирмы, название которой не приводится. Поводом для обвинения стала закупка американской турбины, которую планировалось переправить в Россию для установки на глубоководную арктическую буровую платформу. Они могут отправиться в тюрьму на 20 лет, а также заплатить более $1 млн штрафа.

Как устроен российский рынок газовых турбин

Приразломное месторождение (запасы — 263 млн тонн) было запущено за год до введения американских санкций, в 2013 году. Шельф в этом районе не является глубоководным: глубина моря — около 20 м. Неоднократно «Газпром нефть» прерывала добычу на месторождении, объясняя это плановым техобслуживанием.

На платформе «Приразломная» работают газотурбинные установки (ГТУ), состоящие из трех газогенераторов LM2500 GE, и силовая турбина Vectra 40G Dresser-Rand. ГТУ работают для производства электроэнергии на платформе, оборудование было закуплено в 2012 году и напрямую не относится к производству нефти. Наработка этих турбин пока не достигла необходимых для капремонта 50 тыс. часов, ориентировочно этот срок настанет в 2020–2021 годах, но для этого оборудования требовались дополнительные детали, говорят собеседники “Ъ”, знакомые с ситуацией.

В «Газпром нефти» от комментариев отказались.

При этом теоретически «Газпром нефть» могла закупить подобную турбину в Европе — такое оборудование не входит в перечень, по которому в ЕС должен осуществляться экспортный контроль (приложение 2 к решению Совета ЕС 833 от 2014 года).

Специальный советник по санкционному праву коллегии адвокатов Pen & Paper Сергей Гландин отмечает, что вследствие санкций европейским поставщикам при работе с подсанкционными компаниями приходится обращаться за разрешением на продажу оборудования к соответствующим органам, чтобы доказать, что это оборудование не подпадает под ограничения. Поэтому европейцы предпочитают по умолчанию использовать «презумпцию отказа». «Все боятся нарушить санкции, особенно американские, и, чтобы защититься от лишних рисков, могут автоматически отказать»,— поясняет он. Из-за этого российским компаниям, по его мнению, приходится разрабатывать сложные схемы по закупке оборудования.

Между «атмо» и «турбо». Какой выбрать двигатель?

Как говорилось в советской кинокомедии «Берегись автомобиля»: «Каждый, у кого нет машины, мечтает еe купить. И каждый, у кого есть машина, мечтает еe продать».

Со времени выхода фильма прошло больше пятидесяти лет, машины стали во много раз сложнее в техническом плане, модельный ряд расширился на несколько порядков. Но личный автомобиль — это по-прежнему серьeзная покупка для семьи, и никто не хочет прогадать с выбором.

Итак, у вас на руках заветная сумма, вы уже определились с маркой и моделью будущего автомобиля. И тут встаeт важный вопрос: с каким двигателем брать машину? Если вопрос о выборе дизельного или бензинового двигателя для вашего автомобиля решeн в пользу последнего, возникает ещe одна дилемма: атмосферный или с турбонаддувом.

В нашей стране большинство популярных моделей, будь то бюджетные седаны или сверхпопулярные кроссоверы, предлагаются как с турбированными, так и с атмосферными моторами. При этом, чем выше класс автомобиля и его цена, тем шире линейка именно турбированных агрегатов. Это общемировая тенденция: турбомоторы постепенно вытесняют атмосферные двигатели.

Прежде чем сделать выбор, стоит разобраться в главных отличиях атмосферных и турбированных силовых агрегатов, а также выявить их сильные и слабые стороны.

Как это работает

Основное отличие двух моторов заключается в способе подачи воздуха в цилиндры. В атмосферном двигателе воздух идeт под действием впуска разрежения, который создаeтся на такте, — поршень просто опускается и втягивает воздух. В турбированном моторе работает принудительный наддув — в цилиндры нагнетается больше воздуха с помощью турбокомпрессора.

По сути, турбированный двигатель является модернизацией своего предшественника — классического атмосферного мотора. Основная цель этого изобретения — увеличение мощности без увеличения объeма цилиндров. Турбированный бензиновый двигатель позволяет получить в камерах сгорания более высокую степень сжатия. Благодаря тому, что воздух подаeтся в камеры сгорания под давлением, достигается более полное сгорание топливно-воздушной смеси.

Турбина состоит из двух частей: ротора и компрессора. Двигатель в процессе работы производит выхлопные газы. Эти раскалeнные газы, поступая под давлением в ротор, раскручивают турбонагнетатель, воздействуя на лопатки турбины. Только после этого они поступают в глушитель. Вал ротора, вращаясь, приводит в действие компрессор, который нагнетает воздух в камеры сгорания, образуя дополнительную степень сжатия.

Воспользуемся простым примером для иллюстрации: если объeм мотора составляет 1,6 литра, то мощность классического атмосферника не превысит 100-110 л.с. В свою очередь, турбированный двигатель при том же объeме сможет выдать до 180 л.с.

Кстати, турбированные двигатели имеют свою небольшую классификацию.

  1. Механический нагнетатель. На впуске стоит воздушный насос — компрессор, который приводится в движение от коленчатого вала мотора.
  2. Турбокомпрессор, который использует энергию выхлопных газов. Принципы его работы мы рассмотрели выше.

Немного истории

Готтлиб Даймлер, один из создателей первого двигателя внутреннего сгорания, экспериментировал с нагнетателем, приводимым от коленвала, ещe в 1885 году. Несколькими годами позже Луи Рено — отец одноимeнной марки автомобилей — получил патент на аналогичную конструкцию для ДВС в 1902-м. Причeм само устройство для промышленного применения братья Рутс изобрели ещe в 1859-м.

Примерно тогда же опыты с турбиной, работающей от выхлопных газов, ставил швейцарец Альфред Бюши. Именно ему приписывают создание турбонаддува, функционирующего по такому принципу, в 1905 году. Правда, установить истинного первого изобретателя сейчас сложно, ведь Бюши лишь получил патент.

Мировую же известность механическим нагнетателям принесла компания Mercedes-Benz, которая стала устанавливать наддувные компрессоры в конце 20-х годов сначала на гоночные, а начиная с 30-х и на серийные машины.

Из Германии мода на наддувные машины перекинулась на Голливуд, а оттуда на весь мир. Золотой век немецких «компрессоров» закончился одновременно с началом Второй мировой войны. Основное применение компрессоров в военное время пришлось на авиацию: наддув использовался для компенсации недостатка кислорода на больших высотах.

Сразу после Второй мировой войны использование компрессоров продолжилось в основном на моторах Формулы-1. Турбонаддува на гражданских машинах автопроизводители побаивались из-за детонации возросшего давления и температуры. Технологии производства подшипников оставляли желать лучшего, охлаждение и смазка тоже была малоэффективной, из-за этого турбины быстро приходили в негодность.

Окончательно и бесповоротно на путь «турбинификации» мировые производители встали после топливного кризиса конца 70-х.

Победа за турбокомпрессором?

Не углубляясь в технические подробности, скажем, что механические нагнетатели можно считать частью эволюционного пути, а массовое распространение в итоге получили турбокомпрессоры. Для раскрутки нагнетателя требуется мощность с вала двигателя, турбина же раскручивается просто за счeт выхлопных газов. Первый путь технически сложнее и дороже в массовом производстве.

Тем не менее механические компрессоры до сих пор устанавливают! С одной стороны, это премиальные модели британских Jaguar и Land Rover, некоторые двигатели у Mercedes, а с другой — традиционные масл-кары в духе Dodge Challenger Hellcat, которые продолжают специфически «подвизгивать» именно из-за своего механического нагнетателя.

Главное преимущество этой конструкции — приводной компрессор любой конструкции, будучи привязанным к коленвалу, не имеет инерционности. Связь «по педали» с ним прямая, и разгон остаeтся ровным практически во всeм диапазоне.
Как говорится, каждому своe. Но вернeмся к массовым автомобилям.

Преимущества

Если на рынке продаются оба вида двигателей, значит, у каждого есть ряд неоспоримых преимуществ. Рассмотрим их.

Атмосферный двигатель:

  • проще в обслуживании;
  • имеет более высокий ресурс;
  • меньший расход масла;
  • невысокие требования к качеству топлива и масла.

Турбированный двигатель:

  • высокая мощность и увеличенный крутящий момент при равных объeмах двигателя;
  • меньший расход топлива.

Недостатки

Равно как плюсы, у каждого из двух типов двигателей есть свои недостатки.

Атмосферный двигатель:

  • имеет большой вес;
  • при одинаковом объeме с турбомотором мощность ниже;
  • сниженная динамика — в сравнении с турбомотором того же объeма;
  • сложности при езде в горах.

Большинство минусов атмосферного двигателя всплывают при сравнении с турбированными агрегатами. Отдельно стоит сказать о последнем пункте: воздух в горах слишком разреженный, его количества не хватает для стабильной работы мотора, поэтому двигатель попросту «задыхается».

Турбированный двигатель:

  • высокие требования к качеству смазки и топлива;
  • дорогостоящий ремонт;
  • долгий прогрев зимой;
  • меньший интервал замены масла.

Трудности выбора

Автолюбителям, которые сомневаются, какой двигатель лучше и выгоднее, однозначного ответа дать не получится. Например, ценителям мощности и динамики имеет смысл присмотреться к турбированному мотору. Однако он же влечeт за собой значительные денежные траты на приобретение бензина и масла высокого качества.

Атмосферный двигатель примечателен своей простотой и неприхотливостью, он прекрасно может служить не одно десятилетие, кроме того, его работоспособность сможет поддержать даже человек с невысоким достатком.

Какое масло нужно турбомоторам, а какое — атмосферным?

У турбомотора наибольшая отдача, то есть максимум выработки тепла приходится на диапазон оборотов в районе 3000-4000 об/мин, когда турбина подаeт повышенное количество воздуха в цилиндры. После того как поток выхлопных газов станет достаточным для полноценной работы турбины, происходит скачок вырабатываемой энергии, сопровождаемый скачком температуры.

Моторное масло в таких условиях обязано сохранять свои свойства как при низких, так и при повышенных температурах. В случае турбированного двигателя это особенно важно, поскольку ось, на которой установлены турбинное и насосное колeса турбонаддува, работает в подшипниках скольжения. В случае если смазочный материал не обеспечит необходимую защиту данного узла, турбина может преждевременно выйти из строя, не выработав свой ресурс, который обычно составляет 30–70% ресурса двигателя.

Для машин с турбокомпрессорами лучше всего подходят синтетические масла, так как они лучше противостоят окислению по сравнению с минеральными и полусинтетическими. К тому же их вязкость в меньшей степени зависит от изменений температуры, что необходимо для обеспечения защиты подшипников турбины на всех режимах работы двигателя.

Что касается самих характеристик вязкости моторного масла, то турбированные моторы «предпочитают» всесезонные масла с низкотемпературным показателем вязкости SAE 0W и высокотемпературным SAE от 20 до 40. Моторные масла с низким показателем высокотемпературной вязкости следует выбирать для повышения топливной экономичности, высокие показатели вязкости — для лучшей защиты двигателя и турбины. В любом случае, подбор смазочного материала следует проводить в полном соответствии с руководством по эксплуатации конкретного автомобиля.

Кроме того, есть пара важных нюансов относительно использования автомобилей с турбированными двигателями:
важно постоянно следить за состоянием масла, меняя его с периодичностью, рекомендованной производителем;
необходимо регулярно проверять воздушный фильтр — если он забился, это нарушит работу компрессора;
турбина быстрее изнашивается, если сразу после остановки автомобиля отключать мотор. Чтобы продлить срок службы турбомотора, ему нужно дать немного поработать на холостых оборотах для охлаждения турбины.

Атмосферные двигатели, в отличие от турбированных, менее требовательны к специфическим характеристикам масла. В данном случае подойдут общие рекомендации, которые мы давали в одной из предыдущих статей.

Стоит лишь напомнить о том, что мы предлагаем простой способ найти подходящее масло, — воспользоваться удобным онлайн-подборщиком. Просто задайте параметры «вид техники — марка — модель» или воспользуйтесь строкой поиска, и вам будут предложены все подходящие виды масла согласно международным стандартам и допускам автопроизводителей.

Ссылка на основную публикацию
Adblock
detector