Зарядка никель кадмиевых батарей - Авто журнал Волгино Авто
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Правила эксплуатации NiCd аккумуляторов

Правила эксплуатации NiCd аккумуляторов

Несмотря на то, что никель-кадмиевые аккумуляторы с этого года запрещены к производству в странах Евросоюза, эти неустанные труженики до сих пор используются во многих недорогих и мощных автономных устройствах (шуруповерты, электробритвы, фонари).

Даже если в инструкции по эксплуатации о типе аккумулятора устройства ничего не сказано, определить то, что именно никель-кадмиевый аккумулятор служит источником тока достаточно просто — чаще всего время зарядки указывается в диапазоне 5-12 часов и присутствует указание на необходимость самостоятельного отключение зарядного по истечению времени заряда.

Для никель-кадмиевых батарей предпочтительнее быстрая импульсная зарядка чем медленная постоянным током. Эти батареи могут выдать большую мощность, что что определяет их выбор для мощных автономных устройств. Никель-кадмиевые батареи единственный тип батарей, который выдерживает полную разрядку при большой нагрузке без каких-либо последствий. Остальные типы батарей требуют неполной разрядки при относительно невысоких мощностных нагрузках.

Никель-кадмиевые батареи не любят длительной зарядки при эпизодической небольшой нагрузке. Периодическая полная разрядка необходима для них как воздух для человека — при отсутствии полной разрядки на электродах образуются большие кристаллы металла (что приводит к проявлению так называемого «эффекта памяти») — аккумулятор скачкообразно теряет свою емкость. Для долгой и эффективной работы NiCd батарей необходимы циклы обслуживания батареи — полная разрядка с последующей полной зарядкой, исходя из большинства рекомендаций — раз в месяц, в крайнем случае раз в 2-3 месяца.

Никель-кадмиевые аккумуляторы являются самыми «дуракоустойчивыми» из современных массовых аккумуляторов — для их использования не требуется даже системы мониторирования параметров аккумулятора, что определяет их использование в недорогих и мощных устройствах.

Зарядка малыми токами за 5-12 часов позволяет обойтись без каких-либо предосторожностей в виде систем контроля заряда-разряда. При перезаряде аккумулятор просто медленно будет терять емкость (на радость производителя). Необходимо помнить об этом при использовании «bad-boy» зарядных устройств (зарядных без механизма автоматического контроля заряда). Поэтому, лучше всего заряжать полностью разряженный аккумулятор и строго соблюдать время зарядки, что позволит сохранить емкость NiCd аккумулятора достаточно долгое время.

При использовании «быстрой» зарядки (со временем заряда менее 5 часов) желательно иметь зарядное устройство с температурным датчиком, поскольку при заряде повышается температура аккумулятора, вместе с температурой растет емкость, с ростом емкости зарядный прибор может перезарядить батарею свыше необходимого уровня, что приводит к еще большему росту температуры (явление «терморазгона» аккумулятора) и, как минимум, к ухудшению параметров батареи. Подобная ситуация существует и при заряде батареи при низких температурах. Температурный датчик позволяет сдвинуть параметры заряда в зависимости от температуры аккумулятора, а также отключить батарею от заряда при превышении скорости роста температуры выше 1 градуса Цельсия в минуту или по достижении температуры батареи в 60 градусов Цельсия что позволяет избежать трагических последствий терморазгона.

В качестве иллюстрации необходимости термодатчика в зарядном могу привести пример двухлетней давности заряда никель-кадмиевой батареи для профессионального шуруповерта на зарядном без термодатчика (на фото — это самое зарядное устройство), позволяющего заряжать батарею ускоренным темпом – за час. В то время была температура в квартире около 30°C, зарядное автоматически должно заряжать аккумулятор до достижения целевого напряжения и автоматически отключаться, что английским по-белому было сказано в инструкции в разделе безопасность. Утром первый аккумулятор из комплекта был заряжен без всяких эксцессов – через 50 минут зарядное отключилось, ближе к вечеру второй аккумулятор при заряде преподнес сюрприз: из-за отсутствия термодатчика в зарядном, батарея вошла в режим терморазгона. Так как заряд был ускоренным проблема была замечена поздно – когда аккумулятор пошел дымом и стал разбрызгивать горячий электролит. Быстро отключенный от сети зарядник удалось спасти. Аккумулятор же еще долго сопел в агонии, пытаясь причинить как можно больше вреда при отходе в мир иной, однако ему это не удалось и вред ограничился стоимостью самого аккумулятора – 15USD. С тех пор зарядное подключается к сети через таймер.

Несмотря на свои недостатки, никель-кадмиевые аккумуляторы до сих пор существуют среди нас. Надеюсь, немного теории и практического опыта, изложенного в статье, позволят читателю получить от никель-кадмиевого аккумулятора своего устройства максимум того, на что он способен.

Никель-кадмиевый аккумулятор

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидроксид никеля Ni(OH)2 с графитовым порошком (около 5—8 %), электролитом — гидроксид калия KOH плотностью 1,19—1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21—25 %), анодом — гидроксид кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка).

ЭДС никель-кадмиевого аккумулятора — около 1,37 В, удельная энергия — порядка 45—65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 900 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20—25 лет. Никель-кадмиевые аккумуляторы (NiCd) наряду с никель-солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных (NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

Содержание

  • 1 История изобретения
  • 2 Принцип действия
  • 3 Параметры
  • 4 Области применения
    • 4.1 Дисковые никель-кадмиевые аккумуляторы
  • 5 Производители
  • 6 Безопасная утилизация
  • 7 См. также
  • 8 Примечания
  • 9 Литература

История изобретения [ править | править код ]

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного — кадмий. Двумя годами позже Эдисон предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Принцип действия [ править | править код ]

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2H2O ↔ 2Ni(OH)2 + Cd(OH)2 E 0 = 1,37 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при −27°С [1] . Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20—35 Вт⋅ч/кг и имеющие большой ресурс — несколько тысяч зарядно-разрядных циклов.

Параметры [ править | править код ]

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45—65 Вт·ч/кг
  • Удельная энергоплотность: 50—150 Вт·ч/дм³
  • Удельная мощность: 150—500 Вт/кг
  • ЭДС: 1,38 В
  • Рабочее напряжение: 1,35—1,0 В
  • Нормальный ток зарядки: 0,1—1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10 % в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100 % ёмкости и 1 % оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию.

Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1—1,1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5—0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр.

После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения [ править | править код ]

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до −40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы [ править | править код ]

Никель-кадмиевые аккумуляторы выпускаются также в герметичном «таблеточном» конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980—1990-х годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным «Кроне», которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Название аккумулятораДиаметр, ммВысота, ммНапряжение, ВЁмкость, А·чРекомендуемый ток разряда, мАПрименение
Д-0,0311,65,51,20,033фотоаппараты, слуховые аппараты
Д-0,0615,66,41,20,0612фотоаппараты, фотоэкспонометры, слуховые аппараты, дозиметры
Д-0,125206,61,20,12512,5аккумуляторные электрические фонарики [ уточнить ] , миниатюрные радиоприёмники
Д-0,2625,29,31,20,2626аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36)
Д-0,5534,69,81,20,5555прицел ночного видения 1ПН58 (блок из пяти Д-0.55С), фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34)
7Д-0,1258,40,12512,5замена батарее Крона

Производители [ править | править код ]

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA, GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, Ansmann и др. Среди российских производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), «Космос», ЗАО «Опытный завод НИИХИТ», АО «НИИХИТ».

Безопасная утилизация [ править | править код ]

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации — более дорогое, чем для утилизации свинцовых батарей.

Все о никель-кадмиевых (Ni-Cd) аккумуляторах

В одной из наших статей мы раскрывали самые популярные вопросы о щелочных аккумуляторах. Никель-кадмиевые (Ni-Cd) являются самыми распространенными видами щелочных батарей. Созданы они были Вальмаром Юнгером в 1899 году.

Сегодня разберемся подробнее в устройстве и принципе работы Ni-Cd аккумуляторов.

Никель-кадмиевые аккумуляторы широко применяются в железнодорожном, морском и речном транспорте, в троллейбусах, трамваях, самолетах и вертолетах. Так что сфера применения данных аккумуляторов очень обширна. Они по-прежнему доминируют при использовании в авиации, военной технике.К сожалению, никель-кадмиевые аккумуляторы нет возможности использовать в устойствах, которые имеют потребление большой мощности.

Из плюсов Ni-Cd аккумуляторов можно отметить:

  • малочувствительны к низким температурам;
  • возможность быстрого заряда;
  • приспособленность для использования в жестких условиях эксплуатации.

Из минусов, можно выделить следующее:

  • высокий уровень саморазряда;
  • после длительного хранения емкость восстанавливается только после 5 циклов разряда-заряда;
  • для продления срока службы рекомендуется каждый раз полностью его разряжать для предотвращения «эффекта памяти».

Какова же конструкция данного аккумулятора?

Никель – кадмиевые аккумуляторы выступают трех видов: цилиндрические, призматические, таблеточные или дисковые.

Компания ООО «Курс» реализует никель-кадмиевые аккумуляторы, корпус которых изготовлен из полимерного материала. Относящегося к группе слабогорючих, по степени воспламеняемости – к трудновоспламеняемым. Положительные и отрицательные электроды размещены поочередно, а между ними расположен сепаратор.

Что влияет на заряд аккумуляторов?

Зарядку Ni-Cd аккумуляторов необходимо проводить в температурном диапазоне 0 – 40 градусов Цельсия.

Цилиндрические никель-кадмиевые аккумуляторы обычно заряжаются от 3 до 7 часов в зависимости от емкости тока.

Аккумуляторы ООО «Курс» обладают следующими свойствами:

  • низкое зарядное напряжение, что обеспечивает работу в условиях заряда постоянным напряжением, в том числе при низких температурах;
  • высокое сопротивление изоляции;
  • отсутствие неудобного в эксплуатации резинового чехла;
  • сохранение работоспособности после глубоких разрядов;
  • высокие разрядные характеристики при низких температурах;
  • длительная сохранность заряда;
  • снижение газовыделения, сокращение доливок воды.

Какие же основные особенности эксплуатации никель-кадмиевых следует соблюдать?

Как и в любых других аккумуляторах при эксплуатации никель-кадмиевых аккумуляторов происходят изменения, оказывающие влияние на работоспособность:

  • изменение состава и объема щелочного электролита, а также его перераспределение в батарее;
  • потеря активной массы электролитов;
  • возникновение утечек по проводникам;
  • распад органических веществ.

Из-за высокого окислительного потенциала положительного электрода на никель-кадмиевом аккумуляторе окисляются органические примеси. Увеличение давления в никель-кадмиевом аккумуляторе также оказывает пагубное влияние на состояние аккумулятора.

Еще один момент, который не стоит упускать – это водород, который скапливается при постоянной разрядке батареи до 0 вольт. У щелочных никель-кадмиевых аккумуляторов имеется аварийный клапан, чтобы сбросить давление. Все эти факторы также влияют на уровень работоспособности аккумуляторов.

В заключении, хотелось бы рассказать, как происходит маркировка никель-кадмиевых аккумуляторов:

В условном обозначении аккумулятора и батареи цифры и буквы обозначают:

Цифры перед буквами – количество аккумуляторов в батарее;

К (НК) – открытый никель-кадмиевый призматический аккумулятор;

L – длительность режима разряда;

H – короткий режим разряда;

55, 125, 220, 550 – номинальная емкость аккумулятора в Ампер-часах

Р (П) – пластмассовый корпус

(У) – климатическое исполнение

Узнать больше про никель-кадмиевые аккумуляторы, ознакомится с различными видами и сделать заказ, Вы сможете у менеджеров ООО «Курс». Мы предлагаем широкий ассортимент: КН 150 Р, КН 220 Р, KL 375 P, НК – 125 П, НК – 55 Р и др.

Связаться с нами можно по бесплатному номеру 8 800 200 60 10.

  • Россия г Великие Луки
  • пр-т Гагарина 9, к.1, офис 4
  • Тел./Факс: +7 (81153) 3-62-65
  • Тел.: 8 800 200 60 10
  • Электронная почта: info@kurs60.ru
  • Время работы: 8:30 — 17:30 (по Мск.)

Моб. тел. (Whatsapp, Viber):

Представительство г. Москва
Тел.: +7 (495) 197-63-55

Ni-Cd аккумуляторы как заряжать и зарядные устройства

Ni─Cd аккумуляторы получили широкое распространение в различных электронных девайсах и переносном инструменте. Например, это музыкальные плееры, фотоаппараты и так далее. Последние годы практически заменили литий─ионные АКБ. Там, где раньше использовались никель─кадмиевые аккумуляторы (ноутбуки, мобильные гаджеты), теперь работают батареи литиевого типа. Они не смогли заменить их только в устройствах, где требуется высокий разрядный ток (электроинструмент). Кадмиевые батарейки довольно прихотливые в плане обслуживания. Нужно уметь их правильно использовать, заряжать, а также делать периодические циклы заряд-разряд, чтобы устранять «эффект памяти». В этом случае Ni─Cd аккумуляторы прослужат долго. В этом материале речь пойдёт о том, как заряжать никель─кадмиевые АКБ и о зарядных устройствах для них.

Чем заряжать Ni─Cd аккумуляторы?

Для того чтобы заряжать никель─кадмиевые аккумуляторы, требуется специальное зарядное устройство. На рынке имеется огромное разнообразие таких устройств. Среди них стоит выделить 2 основных типа устройств:

  • автоматические;
  • реверсивные импульсные.


Автоматические ЗУ для никель─кадмиевых батарей представляют собой простые устройства. Стоимость их небольшая, конструкция несложная. Одновременно с их помощью возможно заряжать 2 или 4 батарейки. Для зарядки Ni─Cd аккумулятора, он просто вставляется в ЗУ, выбирается количество элементов и включается в сеть. Многие пользователи портативных плееров и фотоаппаратов знают, как заряжать Ni─Cd аккумуляторы с помощью автоматических сетевых ЗУ.

Реверсивные импульсные зарядки имеют более сложное устройство и стоят дороже автоматических. Некоторые производители таких устройств относят их к профессиональному классу. Такие ЗУ заряжают аккумуляторы циклически с различным временным интервалом. При этом многие из них делают разрядку, балансировку батареек Ni─Cd.

Как заряжать и разряжать Ni─Cd аккумуляторы?

Процесс разрядки

left;»>Этот тип аккумуляторов имеет разрядные характеристики, существенно зависящие от параметров батареи, определяющих величину внутреннего сопротивления. Например, это толщина электродов, их структура и т.п. Ниже приведен полный список параметров, влияющих на разрядные характеристики:

  • объём электролита;
  • толщина и структура сепараторного материала;
  • плотность сборки;
  • особенности конструкции.

Самая высокая велечина ёмкости Ni-Cd аккумуляторной батареи наблюдается при 20 С. Если температура растёт, то ёмкость не снижается. Значение 20 С лучше всего подходит для зарядки АКБ.

center;»>

left;»>Если температура окружающей среды снижается в отрицательную область, то величина разрядной ёмкости уменьшается пропорционально росту тока разряда. Это происходит из-за того, что при снижение температуры приводит к увеличению внутреннего сопротивления батареи и снижается разрядное напряжение.

Зарядка Ni─Cd аккумуляторов

Важной задачей при заряде Ni─Cd аккумуляторов является исключение перезаряда. Это очень важный момент. Когда вы заряжаете никель─кадмиевый аккумулятор, внутри него растёт давление. В процессе заряда происходит выделение кислорода и снижение коэффициента использования зарядного тока.

Для полного заряда Ni─Cd аккумулятора ему нужно в процессе зарядки передать до 160% номинала ёмкости. Заряжать АКБ разрешается в интервале от 0 до 40 С, а желательно это делать от 10 до 30 С. Если на минусовом электроде падает температура, то уменьшается поглощение кислорода. При этом начинает расти давление. При существенной перезарядке от избытка давления может сработать аварийный клапан. Когда температура растёт, потенциал аккумулятора увеличивается. При этом на плюсовом электроде кислород начинается выделяться очень рано.

Чтобы полноценно использовать мощность Ni─Cd аккумулятора, нужно заряжать его большими зарядными токами. Если требуется сообщить ему максимум ёмкости, то величина зарядного тока должна быть небольшой (0,1*С). Он будет заряжаться в таком режиме примерно 14─16 часов. Используя подачу тока ступенями, вы можете ускорить процесс зарядки Ni─Cd аккумулятора. По такой схеме нужно заряжать силой тока 1*С до 10% ёмкости, затем 1,5*С до 80 процентов. Оставшаяся ёмкость набирается током величиной 0,5*С.

В итоге

Когда будете заряжать Ni─Cd аккумулятор, не допускайте его сильного нагрева и излишнего заряда. Чем большее число параметров контролирует ваше ЗУ с целью отключения заряда, тем лучше. Современные зарядные устройства для никель─кадмиевых аккумуляторов обязательно контролируют несколько параметров, по которым определяется точное время отключения заряда.

Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов

В наше время существует огромное количество типов зарядных устройств для никель-кадмиевых (NiCd) и никель-металлогидридных (NiMH) аккумуляторов типоразмера АА или ААА. Существуют различные методики зарядки. Самая древняя и она же самая щадящая по отношению к аккумулятору — это зарядка стабильным током 0,1 от емкости, выраженной в ампер-часах до достижения напряжения на элементе 1,45-1,5 В, на что обычно требуется 12-14 часов.

Способы более быстрой зарядки большими токами часто оказываются губительными для здоровья аккумулятора, потому что должны индивидуально соответствовать конкретно взятому типу аккумулятора, что далеко не всегда реализуемо в зарядном устройстве: не станет же пользователь каждый раз перестраивать зарядное устройство или закупать абсолютно одинаковые аккумуляторы во всю аппаратуру, потому без крайней надобности быструю зарядку лучше не использовать. Если аккумулятор никель-кадмиевый, то перед зарядкой его нужно разрядить до напряжения 1 В, иначе он будет терять емкость, особенно, если каждый раз его заряжать не полностью разряженным, но такие аккумуляторы уже используются очень редко, на смену им приходят NiMH элементы, обладающие большей удельной емкостью и не склонные к эффекту памяти, однако имеющие значительно меньший ресурс количества циклов заряд-разряд. Существуют конечно фирменные зарядные устройства, учитывающие все нюансы правильного заряда аккумуляторов. Они определяют степень заряженности по напряжению на аккумуляторе или (и) по небольшому спаду напряжения в конце зарядки (дельта-U чувствительные устройства), контролируют они также и температуру аккумулятора. Но такие устройства очень дороги. Кроме того, готовые зарядные устройства часто заряжают последовательно соединенные 2 или 4 аккумулятора, что есть очень неправильно, поскольку при зарядке последовательно соединенных аккумуляторов практически невозможно обеспечить одинаковую степень их заряженности. Аккумуляторы часто имеют хоть и незначительный, но все же заметный разброс в параметрах, потому обеспечить их правильный заряд можно только контролируя процесс каждого аккумулятора отдельно.

Понятно, что изготовить в домашних условиях устройство, учитывающее все тонкости заряда практически невозможно — получится дороже готового фирменного. Таким образом, ставилась задача создать максимально простое зарядное устройство, которое будет однако абсолютно безопасным для здоровья аккумуляторов и максимально универсальным, подходящим для разных аккумуляторов, имеющихся в хозяйстве. Исходя из этого был выбран алгоритм зарядки стабильным током 200 мА для элементов типоразмера АА и 75 мА для аккумуляторов ААА. Степень заряженности определяется по напряжению на одном отдельно взятом аккумуляторе. Как показала практика, для здоровья аккумуляторов не страшно довольно значительное (-50 +100%) отклонение зарядного тока от положенных 0,1 от емкости. Намного опаснее недо- или перезаряд а также разная степень заряженности аккумуляторов, которые потом будут использоваться в одном устройстве. Исходя из таких соображений собрано зарядное устройство, схема которого приведена ниже.

Рис. 1. Схема зарядного устройства

Трансформатор Т1 понижает сетевое напряжение до 7-12 В, которое потом стабилизируется импульсным стабилизатором, реализованным на транзисторах Т1-Т4 на уровне 4,9В. При одновременной зарядке четырех аккумуляторов стабилизатор выдает ток около 1 А, но благодаря импульсному режиму работы теплоотводы транзисторам не требуются.

Делитель напряжения R8R9 создает опорное напряжение 1,4В, которое сравнивается с напряжением на аккумуляторе, который заряжается, компаратором на OP1. Резистор R7 в цепи обратной связи создает гистерезис около 0,05 В, благодаря чему после достижения напряжения на аккумуляторе 1,45В зарядка прекращается и не включается до тех пор, пока напряжение на аккумуляторе не снизится до 1,35 В. Такой режим работы очень важен при кратковременных отключениях напряжения во время зарядки аккумуляторов: если зарядка не была завершена, то после возобновления электроснабжения она продолжится. Кроме того, устраняются повторные включения-отключения в конце зарядки.

Зарядный ток стабилизируется генератором стабильного тока на Т5 Т6, зарядный ток задается резистором R13. Пока напряжение на аккумуляторе не достигнет установленного порога, напряжение на выходе операционного усилителя практически равно напряжению питания, следовательно транзистор Т5 открыт, генератор стабильного тока работает, светодиод LED1 (оранжевый) светится, индицируя нормальный режим заряда. Когда напряжение на аккумуляторе повысится до 1,45 В, напряжение на выходе операционного усилителя снизится почти до 0, Т5 закроется, светодиод погаснет, зарядка прекратится. Особенностью схемы является то, что светодиод LED1 кроме функций индикации играет роль источника опорного напряжения для генератора стабильного тока.

Импульсный стабилизатор напряжения может использоваться один на несколько аккумуляторов (до 4 без теплоотвода на Т1, и до 8 с теплоотводом, при соответствующей мощности сетевого трансформатора и диодного моста). Количество модулей, обведенных линией и обозначенных на схеме А1 должно быть равно количеству одновременно заряжаемых аккумуляторов.

Настройка.

Сразу после сборки приступают к налаживанию устройства. Сначала подбирая сопротивление R5 в пределах сотен Ом, устанавливают напряжение стабилизации 4,9В, в точке, обозначенной на схеме. Проверяют стабильность напряжения, при изменении нагрузки от 20 мА до 1 А оно не должно изменяться более чем на 0,05В. Если планируется заряжать не более 2 аккумуляторов, верхний предел тока может быть 0,5 А. Проверяют, чтобы не перегревался транзистор Т1. Его сильный нагрев более 50-60 o С говорит о неправильной работе стабилизатора. Потом проверяют образцовое напряжение 1,4 В, при необходимости подбирают сопротивление R9. Далее, установив в разъем разряженный аккумулятор, подбирают сопротивление R13 для обеспечения нужного зарядного тока. При использовании оранжевых светодиодов сопротивлению 3,6 Ом соответствовал зарядный ток 200 мА, при 10 Омах ток был 75 мА. На этом настройка закончена. Если зарядный ток не превышает 200 мА, то теплоотвод на Т6 не нужен.

О деталях.

Транзистор Т1 может быть любым высокочастотным, с небольшим напряжением насыщения эмиттер-коллектор в открытом состоянии. Ток коллектора должен быть более 2 А, напряжение эмиттер-коллектор не менее 40 В. В качестве этого транзистора также неплохо применить n-канальный ключевой полевой транзистор типа IRFZ44, IRF510, но тогда надо менять полярность подключения к диодному мосту на противоположную, а транзисторы Т2 и Т3 должны быть структуры n-p-n, например, КТ815 и КТ3102 соответственно, а Т4 — p-n-p, например, КТ3107. Диод D1 должен быть обязательно высокочастотным, можно с барьером Шоттки, например, 1N5819. Дроссель L1 мотают проводом диаметром около 0,8 мм (20 витков) на ферритовой чашке Б18-Б22 из феррита 1500-2500НМ с немагнитным зазором 0,1 мм. Можно с успехом использовать тороидальный сердечник из прессованного железного порошка (используются выходных в фильтрах компьютерных блоков питания). Дроссель L2 — марки ДПМ или любой готовый около 100 мкГн, обязательно на ток более 1А. Можно также намотать самому проводом не тоньше 0,8 мм на любой подходящий сердечник. Индуктивность этого дросселя может отличаться в большую сторону в несколько раз, важно, чтобы он имел очень маленькое сопротивление постоянному току. Операционный усилитель в данной конструкции применяется счетверенный, но если устройство будет на 2 аккумулятора, то можно применить и сдвоенный. Трансформатор любой сетевой, с напряжением на вторичной обмотке от 7 до 12 В, мощность примерно 1,5-2 Вт на каждый заряжаемый аккумулятор.

Диодный мост может использоваться любой подходящий на ток 1 А и более, можно и на отдельный диодах типа 1N4001.
Вариант компоновки и печатной платы устройства на 4 аккумулятора (2 АА и 2 ААА) смотрите на фото.

Рисунок 2. Печатная плата

Рисунок 3. Компоновка внутри корпуса и внешний вид

Как заряжать ni cd аккумулятор: разновидности зарядных устройств, процесс заряда и разрядки

Источники тока на базе соединений никеля и кадмия, массово выпускающиеся с 50-х гг. прошлого века, используются в портативных электрических инструментах и электронном оборудовании. Низкая стоимость изделий позволяет им конкурировать с батареями на литиевой основе. Пользователю необходимо знать, как заряжать Ni-Cd-аккумулятор, поскольку от корректности этой процедуры зависит ресурс батарейки.

Особенности эксплуатации Ni-Cd-аккумуляторов

Правила эксплуатации никель-кадмиевых батареек:

  1. При использовании источников постоянного тока на никель-кадмиевой основе следует учитывать “эффект памяти”, приводящий к снижению емкости батареи. Явление возникает вследствие частичной разрядки элемента в процессе применения.
    Батарея прекращает работу при достижении зафиксированного значения, несмотря на оставшуюся часть емкости. Для устранения этого эффекта необходимо добиваться разряда батарейки до напряжения 0,9-0,95 В, дальнейшее снижение напряжения негативно влияет на ресурс аккумуляторной батареи.
  2. Перед началом применения никель-кадмиевого элемента выполняется цикл тренировочных разрядов и зарядов, позволяющих довести параметры изделия до заявленных производителем характеристик. Рекомендуется выполнить 4-6 рабочих циклов, для восстановления элементов низкого качества производится 30-40 циклов зарядки и разрядки.
  3. Если аккумулятор не использовался более 4-6 месяцев, то выполняется дополнительный цикл тренировки. Следует учитывать, что злоупотребление тренировочными циклами приводит к необратимому повреждению конструкции никель-кадмиевой батареи.
  4. Новые аккумуляторы допускают длительное хранение без зарядки. Если не планируется использование устройств, то выполнять зарядку не рекомендуется, т.к. при длительном хранении заряженных изделий наблюдается деградация элемента, приводящая к падению емкости и остальных параметров. Если требуется поместить на хранение ранее использовавшиеся источники тока, то они предварительно разряжаются до 0,9 В.
  5. Батареи, разряжавшиеся и заряжавшиеся слабыми токами, теряют свои емкостные характеристики. Подобное явление наблюдается у элементов, установленных в источниках бесперебойного питания. Для восстановления рабочих характеристик достаточно провести цикл глубокой разрядки с последующим набором емкости от зарядного приспособления.

Разновидности зарядных устройств для никель-кадмиевых аккумуляторов

Для восстановления емкости АКБ никель-кадмиевого типа используются 2 разновидности зарядных устройств:

  • автоматического типа;
  • импульсные реверсивные блоки.

Автоматический модуль оснащен гнездами соответствующего аккумуляторам размера. Такие устройства рассчитаны на 2 или 4 элемента, в конструкции блока предусмотрен переключатель, позволяющий выбрать количество заряжаемых изделий.

Зарядка аккумуляторов начинается после подключения блока к бытовой сети напряжением 230 В. Внутри модуля установлен понижающий трансформатор с выпрямительным каскадом, для отображения статуса зарядки применяется линейка светодиодов или многоцветный индикатор.

Во время зарядки индикатор горит красным цветом, после ее завершения включается зеленая лампочка. В конструкции автоматического блока предусмотрена функция разряда батареи, активируемая кнопочным переключателем.

Для индикации режима разряда применяется диод желтого цвета, после снижения емкости зарядное устройство автоматически переходит в режим зарядки батарей. В процессе зарядки повышается температура корпуса батарейки, в блоке имеется датчик, который отключает подачу тока при достижении порогового значения.

Реверсивный зарядный блок относится к категории профессиональных изделий, отличается наличием микропроцессорного контроллера. Оборудование подает продолжительные импульсы зарядки, которые чередуются с кратковременным разрядом (время цикла изменяется в соответствии с установленным алгоритмом).

Оборудование позволяет поддерживать работоспособное состояние источника тока и продлевает срок службы Ni-Cd-батарей.

Процесс разряда и заряда Ni-Cd-аккумуляторов

В процессе заряда батареи на положительном электроде, выполненном из оксида никеля, происходит химическая реакция с выделением свободного электрона. На кадмиевом отрицательном электроде проходят дополнительные реакции.

При перезарядке элемента происходит выделение атомов кислорода, которые затем подаются через пористый сепаратор к отрицательному полюсу для последующего восстановления. Постоянство цикла восстановления обеспечивает поддержание стабильного давления газа внутри замкнутого корпуса.

При переразряде на отрицательном электроде формируются атомы водорода, который затем окисляется на никелевом положительном элементе. Из-за низкой скорости этого процесса возможно накопление газа. Для устранения эффекта выделения водорода в N-Cd-батареях всегда применяются отрицательные электроды, имеющие больший объем, чем положительные.

Процесс разряда никель-кадмиевых батарей

На процедуру разряда батарей, построенных на основе никель-кадмиевой композиции, влияют несколько факторов:

  • конфигурация и строение электродов;
  • схема и толщина сепаратора;
  • количество электролита и его химический состав;
  • плотность сборки;
  • конструктивные особенности батареи.

Конфигурация корпуса и площадь электродов учитываются при выборе типа аккумулятора, соответствующего условиям работы. Например, дисковые батареи с увеличенным сечением электродов, выполненных по технологии прессования, применяются в условиях продолжительного разряда. Устройства обеспечивают плавное снижение емкости и напряжения до 1,1 В. Остаточная емкость составляет до 10%, она падает в ходе дальнейшей разрядки до 1 В.

Конструкция цилиндрического элемента не позволяет увеличивать ток разряда до значений выше 20% от номинальной емкости.

Причиной является невозможность обеспечения равномерного функционирования активной массы по всему сечению электродов.

Для устранения недостатка практикуется уменьшение диаметра электродов с одновременным увеличением количества деталей. При использовании 4 элементов обеспечивается увеличение тока до 55-60% от емкости батареи.

Для повышения эффективности работы используются аккумуляторы никель-кадмиевого типа с электродами, выполненными из металлокерамического композита. Детали отличаются пониженным внутренним сопротивлением, обеспечивая поддержание напряжения не ниже 1,2 В до разряда на 90% от заявленной производителем емкости.

При снижении напряжения на клеммах до 1,0 В емкость батареи снижается до 3% от стартового значения. При подключении внешней нагрузки ток разряда превышает номинальную емкость аккумуляторных элементов в 3-5 раз.

Батареи цилиндрического типа АА или ААА оснащаются электродами рулонной конструкции. Устройства обеспечивают ток в цепи до 10 раз выше номинальной емкости. Для обеспечения максимальных характеристик требуется поддержание температуры источника тока в диапазоне 18-22°С.

При нагреве емкость элементов снижается незначительно, при охлаждении батареи до отрицательных температур начинается снижение емкости (пропорционально току). Этот эффект возникает из-за роста сопротивления электролита и материала электродов.

При дальнейшем снижении температуры в замкнутом объеме электролита начинают формироваться кристаллы. Состав и количество твердых фракций зависят от состояния элемента и степени охлаждения. При полном замерзании электролита прекращаются электрохимические процессы, что приводит к падению напряжения до нулевой отметки.

Производители никель-кадмиевых батарей не рекомендуют использовать изделия при температуре ниже -20°С. Существуют модификации, рассчитанные на охлаждение до -40°С, но сколько отработает батарея при таких условиях, неизвестно.

Процесс заряда никель-кадмиевых батарей

При восстановлении емкости никель-кадмиевых источников тока производится принудительное ограничение степени зарядки. В процессе зарядки происходит выделение кислорода, который повышает давление внутри корпуса батареи, проходящие электрохимические процессы снижают эффективность использования поступающего тока.

Часть подводимой электроэнергии преобразуется в тепло, в конструкции батареи предусмотрен дренажный клапан, который стравливает излишки газа при росте давления выше допустимого.

Долговечность аккумулятора зависит от того, каким током производится зарядка. Для обеспечения максимального эффекта сила тока устанавливается на уровне 1,6-2,0 от номинальной емкости заряжаемого элемента. Конструкция батареи позволяет вести зарядку при температуре от 0° до 40°С, но рекомендуется выполнять операцию при нагреве до 10-30°С.

При попытке зарядить замерзшую батарею образующийся кислород не поглощается материалом отрицательного электрода, что приводит к росту давления и деформации металлического кожуха аккумулятора.

При повышении температуры выделение ионов кислорода на положительном электроде происходит быстрее, что ускоряет процедуру восполнения емкости. При поддержании стабильной температуры интенсивность зарядки регулируется силой тока, подаваемого на клеммы, который изменяет интенсивность выделения ионов.

При этом скорость поглощения не зависит от степени нагрева, этот параметр определяется конструкцией никель-кадмиевого элемента.

Поскольку интенсивность поглощения кислорода зависит от конфигурации электродов, конструкции сепаратора и объема электролита, то возможно создание батареек, допускающих ускоренную зарядку. Для этого применяются источники тока с увеличенным числом электродов, имеющих уменьшенное сечение. Например, цилиндрические элементы заряжаются в 2-3 раза быстрее плоских аккумуляторов.

Также существуют методики зарядки никель-кадмиевых аккумуляторов с деградировавшим электролитом. В корпусе элемента сверлится отверстие, через которое закачивается дистиллированная вода. Если производится восстановление аккумуляторной банки, собранной из нескольких батарей, то предварительно определяются детали с напряжением на клеммах около 0 В.

Заполненные водой аккумуляторы выдерживаются при комнатной температуре на протяжении 10-12 часов, затем на выводы подается напряжение, позволяющее активировать электрохимические процессы.

После появления на выходах напряжения, отличного от 0 В, производится стандартная зарядка. Рекомендуется выдержать источники тока 2-3 дня, а затем провести контрольный замер напряжения. В случае его падения выполняется повторная доливка дистиллированной воды (объем зависит от размера корпуса).

Если напряжение не снизилось, отверстия заделывают, а элементы 2-3 раза заряжают и разряжают, при необходимости производится сборка компонентов в единую банку.

Режим заряда Ni-Cd-аккумулятора

При стандартном алгоритме восполнения заряда на протяжении 14-16 часов выполняется подача постоянного тока силой 10% от емкости батареи (исходное напряжение на клеммах аккумулятора составляет 0,9-1,0 В).

Дополнительные рекомендации по зарядке указываются производителем АКБ. Например, при зарядке цилиндрической батареи сила тока составляет 20% от номинальной емкости, а время восполнения емкости не превышает 6-7 часов. При увеличении тока до 30% время зарядки падает до 4 часов.

Существуют специальные серии аккумуляторов, позволяющие восстанавливать емкость за 1-1,5 часа. При ускоренном режиме используются различные средства контроля (по времени и по температуре корпуса). При ускоренной зарядке происходит активное газообразование, и если нет контроля, то наступает быстрая деградация элемента или разрыв корпуса.

Восстановление заряда Ni-Cd-аккумулятора состоит из 2 этапов:

  1. Фаза начальной зарядки никель-кадмиевого аккумулятора характеризуется увеличением напряжения на клеммах, а затем происходит стабилизация значения, что фиксируется микропроцессором зарядного устройства. Ток зарядки устанавливается на уровне до 200% от емкости аккумулятора, часть зарядных блоков оснащена переключателем, позволяющим выбрать вид импульса при подаче напряжения.
  2. После полной зарядки батареи происходит снижение напряжения, что является сигналом к прекращению подачи тока на клеммы. Параметр падения обозначается DP (Delta Peak), от точности замера значения зависит качество зарядки, также она влияет на снижение риска перезаряда батареи, сопровождаемого повышенным газообразованием.
    Часть зарядных устройств позволяют корректировать параметр DP вручную, рекомендуется установка корректора в минимальное положение.

Профессиональные зарядные блоки производят заряд аккумулятора по ступенчатой методике с одновременным контролем температуры корпуса (не допускается прогрев выше 50°С). Ступенчатый алгоритм позволяет снизить время зарядки стандартных батарей.

Для восполнения первых 10-15% емкости используется ток силой до 100% от емкости, затем происходит плавное увеличение этого параметра до 150%. После зарядки батареи на 90% сила тока снижается в 3 раза, что позволяет уменьшить газообразование и исключает вредный эффект перезаряда Ni-Cd-аккумулятора.

После отключения питания внутри аккумулятора продолжаются электрохимические процессы, связанные с преобразованием веществ на поверхности электродов. Затем начинается постепенное выравнивание скорости выделения ионов кислорода на положительном электроде и интенсивности поглощения вещества кадмиевым отрицательным элементом.

Давление внутри батареи падает, но при предварительном перезаряде источника тока снижение давления занимает до 5-6 часов.

Зарядка никель кадмиевых батарей

Режимы зарядки аккумуляторов

Проблемы зарядки никель-кадмиевых аккумуляторов по прежнему актуальны. Какое зарядное устройство лучше? Как определить момент окончания зарядки? Какой режим зарядки предпочтительнее? и др. — все это составило предмет исследований, которым посвящена статья, опубликованная в ноябрьском номере 1995 года чешского журнала «Amatererske Radio»; краткое изложение ее помещено в журнале Радио № 7 за 1996 год.

Зарядное устройство обязано, прежде всего, передать аккумулятору соответствующий электрический заряд. Но это требование дополняется обычно пожеланиями обеспечить быстроту зарядки аккумулятора, сохранить на протяжении длительного времени его номинальную емкость, сделать зарядку безопасной и др.

В зарядных устройствах любого типа важнейшим является определение момента окончания зарядки аккумулятора. Это делается несколькими способами.

1. При зарядке аккумулятора постоянным, не изменяющимся в процессе зарядки током ее прекращают вручную по истечении определенного времени. На такой режим ориентированы многие наиболее дешевые зарядные устройства. Зарядный ток в них составляет обычно I=0,1·Е, где I — зарядный ток в амперах, а Е — емкость аккумулятора в амперчасах. В этом режиме емкостной КПД аккумулятора принимают равным 2/3 и, соответственно, длительность зарядки устанавливают равной 15 часам. Режим зарядки малым током (он может быть и меньше 0,1·Е при соответствующем увеличении продолжительности зарядки) замечателен тем, что даже при значительной перезарядке аккумулятор не будет поврежден, во всяком случае — не взорвется.

2. Аккумулятор заряжают постоянным током, многократно превышающим 0,1·Е (в 10. 20 раз). Зарядка прекращается автоматически по истечении заданного — более короткого — времени.

В режиме такой интенсивной зарядки обязательно должно соблюдаться следующее. Во-первых, аккумулятор необходимо предварительно разрядить (обычно — до 1 В на банку); во-вторых, должна быть обеспечена строгая зависимость продолжительности зарядки от установленного значения зарядного тока и, в третьих, обеспечено аварийное его отключение (например, по перегреву корпуса).

По идее к этой категории относятся многие зарядные устройства, появившиеся на нашем рынке, но, к сожалению, далеко не все они обеспечивают должную безопасность.

3. Ток зарядки — не обязательно постоянный. Зарядку аккумулятора прекращают при увеличении его температуры. Этот способ имеет серьезные недостатки (аккумулятор почти всегда перезаряжается, ненадежен тепловой контакт и др.) и используется, как правило, лишь для аварийного отключения аккумулятора.

4. Ток зарядки — фиксированный, многократно, как правило, превышающий 0,1·Е. По достижении на аккумуляторе заданного напряжения зарядка заканчивается автоматически. Этот принцип долгое время использовался в самых лучших зарядных устройствах, потеснив систему зарядки аккумулятора малым током.

Установка порогового напряжения здесь весьма критична. Обычно его значение выбирают в пределах 1,45. 1,55 В на аккумуляторную банку, чаще — 1,48 В. Пороговое напряжение зависит, к тому же, от температуры окружающей среды и «возраста» аккумулятора.

Неизменный ток зарядки здесь, вообще говоря, не обязателен. Но это упрощает учет потерь на подводящих проводах. Если из-за их неучета на аккумуляторе будет установлено заниженное пороговое напряжение, это обернется недобором заряда, а установленное лишь на один милливольт выше реального, приведет к тому, что процесс зарядки аккумулятора никогда не кончится. Вернее, кончится тем, что аккумулятор либо перегреется — при малом зарядном токе, либо взорвется — при большом.

Во избежание этого некоторые зарядные устройства по достижении напряжения, чуть меньше порогового, переходят на дозарядку аккумулятора безопасным током, которым ее и завершают.

5. Процесс зарядки контролируют по скорости увеличения напряжения на аккумуляторе: оно быстро увеличивается непосредственно перед ее завершением. Отследив этот момент, зарядное устройство уменьшает большой ток зарядки (он доходит в них до 2·Е) до малого, безопасного, которым зарядка и завершается. По причинам, изложенным в п.4, оба эти тока также лучше иметь фиксированными, не изменяющимися во времени.

Этот способ стал привлекать к себе внимание с появлением специализированной микросхемы U2402B.

6. Как и в предыдущем случае, при зарядке постоянным током состояние аккумулятора определяют по скачку напряжения. Для получения хороших характеристик зарядку ведут током не менее 2·Е.

В таких зарядных устройствах обычно используют аналого-цифровые преобразователи (например, микросхему ТЕА1100 фирмы Philips), которые позволяют заметить 1%-ный скачок напряжения и во время прекратить зарядку. Зарядным устройствам, собранным на базе такой микросхемы, не нужны регулировки, связанные с изменением числа заряжаемых аккумуляторов. В качестве защитной меры в них контролируется продолжительность зарядки.

Ни один из рассмотренных выше способов зарядки сам по себе не является оптимальным. Поэтому нередко они сочетаются.

К наиболее интересным можно отнести сегодня зарядное устройство ULTRA DUO, в котором зарядка заканчивается по всплеску напряжения на аккумуляторе (как в варианте 6), но зарядный ток в ходе ее принимает разные значения. В этой процедуре минимизируется время зарядки аккумулятора.

В зарядном устройстве MULTI-CHARGE-A-MATIC CG-325 фирмы HITEC окончание зарядки определяется как ив предыдущем случае, но зарядка ведется установленным постоянным током (максимально 4,5 А). Кроме таких обычных функций, как разрядка аккумулятора перед зарядкой, проверка его емкости, защита от переполюсовки, контроль длительности зарядки и звуковая сигнализация ее окончания, это устройство благодаря встроенному преобразователю напряжения может заряжать от 12-вольтного автомобильного аккумулятора десять последовательно соединенных никель-кадмиевых аккумуляторов (напряжение на которых в заряженном состоянии доходит до 16 В). Это оценят прежде всего автомобилисты, пользующиеся портативными радиостанциями.

По установившейся терминологии зарядка аккумулятора может быть очень быстрой (до 15 мин), быстрой (до 1 ч), ускоренной (до 3. 4 ч), нормальной (от 12 до 16 ч) и медленной. Реальная емкость аккумулятора зависит от температуры и значений тока зарядки и разрядки. Наибольшая измеренная емкость получается при зарядке аккумулятора большим током и разрядке малым.

Статью прислал Алексей Филатов. TNX!

Методы заряда Ni-Cd и Ni-MH аккумуляторов

Методы заряда Ni-Cd и Ni-MH аккумуляторов

Существует много различных методов заряда NiCd или NiMH аккумуляторов. Но все их можно разделить на 4 основные группы:

• – стандартный заряд – заряд постоянным током, равным 1/10 от величины номинальной емкости аккумулятора, в течение примерно 15 часов.

• – быстрый заряд – заряд постоянным током, равным 1/3 от величины номинальной емкости аккумулятора в течение примерно 5 часов.

• – ускоренный или дельта V заряд – заряд с начальным током заряда, равным величине номинальной емкости аккумулятора, при котором постоянно измеряется напряжение на аккумулятора и заряд заканчивается после того, как аккумулятор полностью заряжен. Время заряда примерно 1 час.

• – реверсивный заряд – импульсный метод заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами.

Несколько слов о терминологии. Емкость аккумулятора часто обозначается буквой “C”, и Вы часто будете видеть ссылки подобные 1/20 C или C/20. Когда говорят о разряде, равном 1/10 C, то это означает разряд током, равным десятой части от величины номинальной емкости аккумулятора.

Так например, для аккумулятора емкостью 600 мА*час это будет разряд током 600/10 = 60mA.

Теоретически аккумулятор емкостью 600 мА*час может отдавать ток 600mA в течение одного часа, 60 мА в течение 10 часов, или 6mA в течение 100 часов. Практически же, при высоких значениях тока разряда номинальная емкость никогда не достигается, а при низких токах превышается.

Аналогично при заряде аккумуляторов, значение 1/10 C означает заряд током, равным десятой части заявленной емкости аккумулятора. Медленный заряд в 1/10 C – обычно безопасен для любого аккумулятора.

Стандартный (или медленный) метод заряда

Этот метод подразумевает заряд током приблизительно равным 50 мА (для AA элементов) в течение 15 часов. При таком токе, диффузия кислорода более чем достаточна, чтобы предпринимать какие-либо меры для уменьшения тока после достижения полного заряда.

Безусловно, что в этом случае существует риск получить уменьшение напряжения при перезаряде.

На графике (Рис.3) ток заряда поддерживается постоянно равным 0. 1C в течение 16 часов. Во время заряда наблюдается повышение напряжения на элементе аккумулятора. (По окончании заряда и при перезаряде напряжение начинает уменьшаться. Примеч. Переводчика.)

Следует отметить, что NiCd и NiMH аккумуляторы всегда заряжаются постоянным током, в отличие от свинцово-кислотных, которые заряжаются при постоянном напряжении.

Метод быстрого заряда.

Разновидностью медленного заряда является метод быстрого заряда, при котором используется ток заряда от 0.3 до 1.0C. В этом случае существенно важно, чтобы аккумулятор был полностью разряжен перед зарядом, так что такие зарядные устройства часто начинают заряд с цикла разряда для того, чтобы зарядить аккумулятор до его максимальной емкости.

На графике (Рис.4) заряд током в 1/3 C поддерживался от 4 до 5 часов. Этот метод заряда имеет тенденцию к перегреву аккумулятора, особенно при заряде током близком к 1 C.

Метод D V заряда

Наилучший метод заряда NiCd и NiMH аккумуляторов – так называемый метод дельта V (метод измерения изменения напряжения). Если измерять напряжение на выводах элемента в течение заряда постоянным током, то можно заметить, что напряжение медленно повышается во время заряда. В точке полного заряда, напряжение на элементе будет кратковременно уменьшаться.

Величина уменьшения небольшая, примерно 10 mV на элемент для NiCd и меньше для NiMH, но явно выражена. Метод дельта V заряда почти всегда сопровождается измерением температуры, что обеспечивает дополнительный критерий оценки степени заряда аккумулятора (а для верности зарядные устройства для больших аккумуляторов высокой емкости обычно имеют кроме этого и таймеры безопасности).

На графике (Рис.5) использовался ток заряда равный 1 C и после достижения полного заряда, ток заряда уменьшился до 1/30 … 1/50 C для компенсации явления саморазряда аккумулятора.

Существуют электронные схемы, разработанные специально для реализации метода дельта V заряда. Например MAX712 и 713. Реализация этого метода более дорога, чем другие, но дает хорошо воспроизводимые результаты.

Следует отметить, что в аккумуляторе с хотя бы одним плохим элементом из цепочки последовательно соединенных, метод дельта V заряда может не работать и привести к разрушению остальных элементов, поэтому необходимо быть осторожным.

Другой экономичный путь обнаружения момента полного заряда аккумулятора заключается в измерении температуры элемента. Температура элемента резко повышается при достижении полного заряда. И когда она повысится на 10° С или значительно выше окружающей среды, прекратите заряд, или перейдите в режим тонкоструйного заряда. При любом методе заряда, если применяются большие токи заряда, требуется предохранительный таймер. На всякий случай не допускайте ток заряда более, чем значение двойной емкости элемента,. (т.е. для элемента емкостью 800 мА*час, не более, чем 1600 мА*часа заряд).

NiMH аккумуляторы имеют специфические проблемы с зарядом. Величина дельта V очень мала (примерно 2mV на элемент) и ее более трудно обнаружить, чем в случае NiCd аккумуляторов.

Поэтому NiMH аккумуляторы для сотовых телефонов имеют температурные датчики в качестве резервного средства для обнаружения дельта V .

Одна из специфических проблем, связанных с зарядом по этому методу заключается в том, что при использовании в автомобилях электрические шумы и помехи маскируют обнаружение дельта V, и телефоны более склонные к управлению зарядом по температурному ограничению. Это может привести к порче аккумулятора в автомобиле, где телефон постоянно подключен (например автомобильный комплект) и многократные запуски и остановки двигателя имеет место. Каждый раз, когда зажигание выключается на несколько минут и затем включается обратно, новый цикл заряда инициируется.

Итак, какой же ток заряда следует считать правильным?

При использовании нерегулируемого зарядного устройства, которое не обеспечивает обнаружение момента наступления полного заряда любым известным способом, необходимо ограничить ток заряда. Практически все NiCd элементы могут заряжаться током C/10 (приблизительно 50 мА для AA элемента) неопределенно долго без охлаждения. При этом, естественно, не удасться избежать уменьшения напряжения после полного заряда, но и аккумулятор не испортится. Все зарядные устройства, непосредственно встроенные в телефоны, имеют электронные схемы обнаружения полного заряда.

Если хотите ускорить процесс, то заряд током величиной C/3 зарядит элементы примерно через 4 часа, и при таком токе большинство элементов лишь немного перезарядится без больших неприятностей. То есть, если Вы заканчиваете процесс заряда в течение часа после достижения полного заряда, то это – хорошо. Исключение перезаряда – вот к чему необходимо стремиться. При токе заряда более C/2 необходимо использовать только зарядные устройства с автоматическими средствами обнаружения полного заряда. При таком токе и выше, элементы аккумулятора могут быть при перезаряде легко повреждены. Те элементы, которые содержат в своем составе поглотители кислорода, могут не охлаждаться, но будут весьма горячими.

С хорошей электронной схемой управления зарядом могут быть использованы токи заряда более 1C – проблемой в этом случае становится уменьшение эффективности заряда и внутреннее нагревание от потерь на внутреннем сопротивлении. Однако, если Вы не спешите, избегайте заряд током большим, чем 1C.

Реверсивный метод заряда

В анализаторах аккумуляторов Cadex 7000 и CASP/2000L (H) используются реверсивные импульсные методы заряда, при котором короткие импульсы разряда распределяются между длинными зарядными импульсами. Считается, что такой метод заряда улучшает рекомбинацию газов, возникающих в процессе заряда, и позволяет проводить заряд большим током за меньшее время. Кроме того, восстанавливается кристаллическая структура кадмиевых анодов, устраняя тем самым «эффект памяти».

На рис.6 схематично изображена временная диаграмма реверсивного метода заряда NiCd и NiMH аккумуляторов, реализованная в анализаторе Cadex 7000. Цифрой 1 обозначен нагрузочный импульс, а цифрой 2 – зарядный.

Величина обратного импульса нагрузки определяется в процентах от тока заряда в диапазоне от 5 до 12 %. Оптимальное значение 9 %. Так например, для NiCd аккумулятора емкостью 1800 мА*час, зарядный ток величиной в 1С равен 1800 мА. Тогда импульс нагрузочного тока будет равен 1800 мА * 0.09 = 162 мА. Выбирайте значение равное 5 % для NiCd емкостью 500 мА*час и менее.

Примечание переводчика:

Был проведен единичный эксперимент по измерению параметров метода реверсивного заряда NiCd и NiMH аккумуляторов емкостью 1000 мА*час.

Измерения проводились с помощью осциллографа, путем измерения параметров импульса напряжения на резисторе С5 -16В – 0.2 Ом +-1%, последовательно включенном в положительную цепь заряда аккумулятора. По результатам измерений получилось:

• длительность импульса «1» составляет

30 мс, а период следования

• амплитуды импульсов тока «1» и «2» примерно одинаковы и равны значению тока заряда.

Дополнительная информация:

Быстрый заряд NiMH аккумуляторов осуществляется постоянным током с отслеживанием момента полного заряда по моменту начала уменьшения напряжения на и (или) максимально допустимому приращению температуры. Типовые характеристики быстрого заряда NiMH аккумуляторов в зависимости от тока заряда приведены на Рис. 7. Дополнительно на рисунке приведены график изменения температуры внутри аккумулятора и изменения тока в процессе заряда.

Рис. 7. Типовые характеристики быстрого заряда NiMH аккумуляторов

Читайте также

Типы аккумуляторов и методы их заряда Никель-кадмиевые аккумуляторы

Типы аккумуляторов и методы их заряда Никель-кадмиевые аккумуляторы Технология изготовления щелочных никелевых аккумуляторов была предложена в 1899, когда Waldmar Jungner изобрел первый никель-кадмиевый аккумулятор (NiCd). Используемые в них материалы были в то время дороги, и их

Заряд литий-ионных (Li-ion) аккумуляторов

Заряд литий-ионных (Li-ion) аккумуляторов Зарядное устройство для Li-ion аккумуляторов подобно зарядному устройству для свинцово-кислотных аккумуляторов (SLA) в части ограничения напряжения на аккумуляторе. Основные различия между ними заключаются в том, что у зарядного

Хранение аккумуляторов

Хранение аккумуляторов Аккумуляторы относятся к категории “скоропортящихся продуктов”, начинающих терять свое качество сразу же после изготовления. Хотя степень деградации для некоторых типов аккумуляторов достаточно низка, все же не рекомендуется хранить их в

О восстановлении аккумуляторов

О восстановлении аккумуляторов Процент восстановленных аккумуляторов при использовании контролируемых циклов разряда / заряда зависит от типа электрохимической системы, количества уже отработанных циклов, метода обслуживания и возраста аккумулятора.Ni-Cd. Наилучшие

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов Зарядные устройства для NiCd аккумуляторов достаточно дешевы. Обычно изготовление внешнего зарядного устройства под популярные размеры аккумуляторов, таких как ААА, АА, C и D, не отнимет много сил и времени. Умение

10. Методы стандартизации

10. Методы стандартизации Метод стандартизации – это совокупность средств достижения целей стандартизации.Рассмотрим основные методы стандартизации.1. Упорядочение объектов стандартизации является универсальным методом стандартизации товаров, работ и услуг. Данный

43. Методы стандартизации

43. Методы стандартизации Метод стандартизации – это совокупность средств достижения целей стандартизации. Рассмотрим основные методы стандартизации.1. Упорядочение объектов стандартизации является универсальным методом стандартизации товаров, работ и услуг. Данный

7.4. Методы маскирования ЦВЗ

7.4. Методы маскирования ЦВЗ К методам, использующим не только особенности строения аудиосигналов, но и системы слуха человека относится также метод маскирования сигнала. Маскированием называется эффект, при котором слабое, но слышимое звуковое колебание становится

Установка тепловых аккумуляторов

Установка тепловых аккумуляторов В установке ТА на любую автомашину можно выделить следующие группы операций:• определение места расположения ТА;• монтаж гидравлической схемы;• подключение блока управления;• прокачка системы охлаждения;• проверка и

5.4.4 Нестандартные методы

5.4.4 Нестандартные методы В случае, если необходимо использовать методы, не являющиеся стандартными, они должны быть согласованы с клиентом и содержать четкое описание требований клиента и цели испытания и/или калибровки. Прежде чем быть использованным, разработанный

4.2. Подбор баков-аккумуляторов

4.2. Подбор баков-аккумуляторов Есть житейское правило: «Чем больше объем бака, тем лучше». В то же время существуют методики точного подбора и расчета объема баков на основе европейских норм UNI 9182.Метод используется для расчета объема гидроаккумулятора на основании

Приборы и методы

Приборы и методы Какая первая ассоциация при слове «измерить»? У меня — вольтметр, у некоторых — метр. То есть «сантиметр». Нет, не тот, которых сто этих в одном том, а который по словарям sartorial meter, metre measure ruler или metre-stick — это который «метр», а tape measure, metre tape measure, tape-line — это

49. Химический состав, методы получения порошков, свойства и методы их контроля

49. Химический состав, методы получения порошков, свойства и методы их контроля Порошковые материалы – материалы, получаемые в результате прессования металлических порошков в изделия необходимой формы и размеров и последующего спекания сформованных изделий в вакууме

4.2.1 Методы разработки ПО

4.2.1 Методы разработки ПО Разработчик должен использовать для всех работ по созданию ПО систематизированные, зарегистрированные методы. План разработки ПО должен содержать описание этих методов или включать в себя ссылки на источники, в которых они

Чем отличается зарядка аккумуляторов Ni-Cd и Ni-MH? Как правильно их заряжать?

NiCd (Ni-Cd, никель-кадмиевые) — старые аккумуляторы с эффектом памяти, требуют правильной зарядки. NiMH (Ni-MH, никель-металлгидридные) более современные, экологичные и проще в эксплуатации. Это руководство избавит от путаницы в использовании устройств на базе NiCd и NiMH-батарей, поможет научиться правильно их заряжать, чтобы избежать проблем (снижение ёмкости, ухудшение характеристик, быстрый износ).

Чем отличаются аккумуляторы NiCd от NiMH, про их плюсы и минусы — читайте в полном руководстве.

Далее мы сравним, чем отличается зарядка аккумуляторов NiCd от зарядки NiMH. Сравнение актуально для электронных устройств:

  • • электроинструмент (отвёртки, шуруповёрты, дрели, перфораторы, циркулярки и так далее),
  • • электрические зубные щётки,
  • • машинки для стрижки,
  • • электробритвы,
  • • электросамокаты и гироскутеры,
  • • игрушки и радиоуправляемые модели.

Ni-Cd и Ni-MH-аккумуляторы: сравнение зарядки (как заряжать)

Никель-металлгидридные (NiMH) батареи обладают более высокой плотностью энергии, чем никель-кадмиевые (Ni-Cd). Другими словами, при одинаковых размере и весе NiMH обеспечивает примерно на 30% больше мощности, чем Ni-Cd. Мы получаем увеличенное время автономной работы без дополнительной нагрузки.

У NiMH слабый эффект памяти, у Ni-Cd сильный и заметный

У NiMH есть ещё одно важное преимущество — эти аккумуляторы не страдают от эффекта памяти в отличие от Ni-Cd.

Если никель-кадмиевая батарея регулярно разряжается частично (до 60%, например), то перед следующей зарядкой ячейка как бы «забывает», что у неё есть способность полностью разряжаться. И 60% ёмкости остаются неиспользованными (аккумулятор работает, но только на 40% от изначальной ёмкости).

В никель-кадмиевых (Ni-Cd) аккумуляторах в отличие от никель-металлгидридных (NiMH) следует избегать пресловутого эффекта памяти. Если не следовать некоторым правилам, то ёмкость уменьшится, время работы от одной зарядки сильно сократится.

Как заряжать Ni-Cd (никель-кадмиевые аккумуляторы)

Особенность: ярко выражен эффект памяти. Требуется полная разрядка и полная зарядка, чтобы не уменьшилась ёмкость (время автономной работы).

  • 1. Полностью разрядите (до 1В на ячейку или выключения устройства) и полностью зарядите (чем чаще, тем лучше, минимум раз в месяц).
  • 2. Используйте только зарядные устройства, предназначенные для Ni-Cd-аккумуляторов (от литий-ионных и литий-полимерных не подходят).
  • 3. Есть универсальные зарядники, где должен быть предусмотрен режим «Ni-Cd» (если его нет, то лучше не использовать такой адаптер).
  • 4. Если вы не планируете долгое время использовать Ni-Cd-аккумулятор, то полностью зарядите его.
  • 5. После длительного хранения разрядите до 1В на элемент и полностью зарядите в течение 3-5 циклов.
  • 6. Некоторые зарядные устройства перед зарядкой Ni-Cd, полностью разряжают ячейку — это нормальная хорошая практика.
  • 7. Во время зарядки никель-кадмиевых батарей температура не должна быть выше 40°C (при нагреве отсоедините зарядник).

Как заряжать Ni-MH (никель-металлгидридные аккумуляторы)

Особенность: чувствительны к качеству зарядного устройства. Требуют стадийного алгоритма и тщательного контроля процесса зарядки из-за высокой чувствительности к перезаряду.

  • 1. Заряжайте и разряжайте, когда удобнее и как удобнее (эффект памяти не выражен).
  • 2. Нужны специальные зарядные устройства для Ni-MH-аккумуляторов (от литий-ионных и литий-полимерных не подходят).
  • 3. В универсальных зарядниках выбирайте режим Ni-MH (без такого режима безопасность процесса и срок службы могут снизиться).
  • 4. В батарейных блоках (когда ячеек несколько) нужна балансировка каждый десятый цикл заряд-разряд (режим балансировки предусмотрен в качественных адаптерах питания).
  • 5. Для хранения аккумуляторов дольше трёх недель полностью зарядите их (избегайте высоких температур хранения).
  • 6. После хранения разрядите (до 1В на ячейку) и полностью зарядите для восстановления номинальной ёмкости.
  • 7. Если во время зарядки аккумулятор Ni-MH очевидно нагревается (температура не должна превышать 60°C), то отключите его от зарядника.

Если коротко подытожить и простыми словами, то никель-кадмиевые (Ni-Cd) аккумуляторы лучше полностью разряжать и полностью заряжать. Чем чаще, тем лучше. Они долго служат и в остальном не очень-то и капризны, как кажется.

У никель-металлгидридных (NiMH) эксплуатация проще и удобнее. Вам не нужно беспокоиться о полной разрядке и полной зарядке. Однако после долгого хранения (например, когда электроинструментом не пользовались больше трёх недель) их лучше «потренировать» 3-5 циклами полного заряда и разряда. Также в батарейных блоках нужно иногда (каждые 10 циклов) делать балансировку (режим обычно предусмотрен в заряднике).

Для составления руководства мы использовали результаты исследования «Быстрая, высокоэффективная и автономная зарядка Ni-MH и NiCd-аккумуляторов», размещённые на сайте ResearchGate. Авторы описывают все особенности и различия в зарядке аккумуляторов обоих типов в рамках исследования двух зарядных устройств LTC4010 и LTC4011.

Принципы и схемы конструкции качественных зарядных устройств для NiMH можно посмотреть в заметке на GlobTek. В ней указано, как работает защита при нарушении температурных режимов, где срабатывает отсечка при перезаряде, химические реакции в процессе, профили разрядки и так далее.

Нет причин избегать никель-кадмиевые ячейки. Достаточно понимать принцип их зарядки и чем он отличается от никель-металлгидридных. В этом руководстве мы сделали акцент именно на сравнении зарядки аккумуляторов Ni-MH и Ni-Cd. Перечень всех отличий, плюсы и минусы — по кнопке выше.

Если вам нужно больше информации, то пишите вопросы в комментарии. Мы ждём ваши сообщения и ВКонтакте @NeovoltRu.

Подпишитесь на нашу группу, чтобы узнавать новости из мира автономности гаджетов, об их улучшении и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.

Ссылка на основную публикацию
Adblock
detector